Disarray Based Signcryption Scheme

Rajni Kumari1 and Ashok Kaushik2

1M. Tech. Scholar, Department of CSE, Bhiwani Institute of Technology & Sciences, Bhiwani, Haryana (India) \\ rajnikumari604@gmail.com

2HOD, Department of CSE, Bhiwani Institute of Technology & Sciences, Bhiwani, Haryana (India) \\ ashokdhirana@gmail.com

Abstract

Signcryption is a cryptographic primitive which simultaneously provides both confidentiality and authenticity in a single logical step. In a proxy signature scheme, an original signer delegates his signing power to a proxy agent, who signs a message on behalf of him. This paper introduces a new proxy signcryption scheme based on the Discrete Logarithm Problem (DLP) with a reduced computational complexity compared to other schemes in literature. In this proposed scheme, the receiver is the only one who can verify the origin of the ciphertext. Moreover, in this scheme, an authorized proxy signcrypter can create valid proxy signatures after verifying the identity of the original signcrypter. The proposed scheme achieves the various desirable security requirements. An elliptic curve based version of the proposed proxy signcryption scheme has been implemented using Mathematica for realistic (256-bit) parameters to emphasize the ease of its practical use.

Keywords: Signcryption, Proxy Signcryption, Discrete Logarithm Problem (DLP), Elliptic Curve Discrete Logarithm Problem.

1. Introduction

Information, in most restricted technical manner, is a series of symbols that is interpreted as a message. Information, kind of event, affects the states of a dynamic system. Conceptually, information is a message (word or expression) that is being conveyed. The concept of information is closely related to notions of representation, constraint, data, pattern, communication, knowledge, understanding, instruction, form, mental stimuli, meaning, control, perception, and entropy. Moreover, information is a kind of assent and like other assent it also has a value. Information is valuable because it affects an outcome, behaviour or a decision. As the internet becomes an increasingly important means of conducting transactions and the volume of e-business grows exponential, a secure infrastructure is needed to provide authenticate, confidentiality and access control.

The modern era has been well-developed and extremely advanced. Security has become an essence in almost all areas of communication. Security has evolved from a basic password scheme to a complex key infrastructure. Cryptography is the study of mathematical techniques related to aspects of information security, such as privacy or confidentially, entity authentication and data integrity. While sending a message over an insecure channel such as internet we must provide security features such as confidentiality, integrity, authenticity.

To achieve these goals, in traditional approaches, the information is digitally signed and then encrypted before transmitting over an unsecure network. The sender signs the message using digital signature scheme and then encrypts the message (and the signature) using a private key encryption algorithm under an encryption key, chosen randomly. The randomly chosen encryption key is then encrypted using the recipient’s public key. This two-step approach is called “signature then encryption”.

Yuliang Zheng in 1997 \cite{2}, presented a positive answer to the following question: “Is it possible to transmit the message of arbitrary length in the way of security and authentication with costs below the required signature–then-encryption scheme?”

This is the first time, since the public key encryption technology has been invented, that the problem is addressed in the literature. He found a new cryptographic primitive called signcryption which meets the functions of digital signature and public key encryption in a logical single step and cost significantly less than the required signature-then-encryption scheme \cite{3}.

The proposed cryptography primitive is more efficient for both type of cost involved: Computation cost and communication overhead. The computational cost represents how much computing effort investment by the sender and the...
receiver of the message. It is by a quantity related to the dominant operation count. The communication overhead represents the extra bits which are appended to a message in case of a digital signature or encryption based on public key cryptography. Encryption and digital signatures are two basic encryption tool, that can guarantee the confidentiality, integrity and non-repudiation. Until signcryption, they are seen as important, but distinct building blocks of different encryption systems.

In many applications, the confidentiality and authenticity are needed together. These applications include secure mail (S/MIME), Secure Shell (SSH), and secure web browser (HTTPS). In order to achieve these two objectives, many cryptography schemes have been created: Schnorr signature-then-ElGamal encryption, DSS-then-ElGamal encryption, RSA signature-then-RSA encryption. Any signcryption scheme should have the following properties:

1. Correctness: Any signcryption scheme should be correct verifiable.

2. Efficiency: The computational cost and communication overhead of the signcryption scheme should be less than the best known signature–then- encryption scheme.

3. Security: A signcryption scheme should also meet the security attributes of an encryption scheme and digital signatures.

These additional properties mainly include:

a) Confidentiality: It should be computationally infeasible for an attacker to observe any partial information of a signcrypted text, without knowledge of the sender's or designated recipient's private key.

b) Unforgeability: It should be computationally infeasible for an attacker to masquerade a sender to create an authentic signcrypted text that can be accepted by an unsigncryption algorithm.

c) Non-repudiation: The recipient should be able to prove to a third party that the sender has sent the signcrypted text. This ensures that the sender cannot deny his signcrypted texts.

d) Integrity: The recipient should have the ability to verify that the received message is the original one, sent by the sender.

e) Public verifiability: Any third-party without any practice on the private key of the sender or the recipient can verify that the signcrypted text message is a valid signcryption of its corresponding message.

Some signcryption scheme provide further properties, such as public verifiability and forward secrecy of message confidentiality, while others do not provide them. Part of in the past few years, the study of chaotic systems in the scientific community and its possible application to cryptography has been great concern.

Chaos is one kind of complex dynamic behavior generated by determined nonlinear dynamic system, which is greatly sensitive to initial conditions and parameters, to repeat that it is impossible. This is a complex and dynamic activities, widely represent in the non-linear system. Its properties, such as the initial conditions and parameters, similar to the statistical properties of the noise makes it difficult to predict. It is widely used in cryptography. The appearance of the enigmatic and random nature is the most attractive features of deterministic chaotic system signals lead to new (engineering) applications due to the sensitivity and unpredictability of the chaos.

Dependency on initial conditions and highly unpredictable nature of chaotic signals is the most attractive feature of chaotic systems that leads to novel cryptographic applications. Cryptography and chaos have some common features, the most prominent being sensitivity to parameters’ and variables’ changes. In 2008 H. Elkamchouchi [5] proposed chaos based signcryption scheme for multi messages multi recipient, no significant research has been carried out on chaos based signcryption schemes. In this paper, Chaos based signcryption schemes for multi messages single receipt and multi message multi receipt is proposed. The main idea, behind the proposed scheme, is to achieve very high security by using chaotic keys for the encryption algorithm, generated by chaotic key generator.

Use of mathematical functions to generate multiple keys or a time slice has been largely unexplored ideas. This function is recommended in [1]. However, a simple mathematical function is not enough. Always assumed that the encryption algorithm is public, and this means that the function to generate multiple keys is known to the hacker as well. This means that, once the hacker is able to find a key, he immediately access other keys. Here a chaotic function can play an important role.
This paper presents an algorithm, the use of the chaotic function \(f(x) = 3x^*(1-x^2) \) explore signcryption scheme to generate multiple keys.

This paper is structured as follows. Chaotic function i.e \(f(x) = 3x^*(1-x^2) \) is discussed in Section II. The third section describes the proposed scheme which includes description of parameters, the key generation phase, dynamic chaotic key generator, and multi message signcryption schemes for single recipient and multiple recipients. In the third section analysis of the proposed scheme for the proof of correctness and for the assessment of algorithm. Section V presents the conclusions and scope for further work in this area.

2. Disarray Function for Signcryption Scheme

Disarray functions were first studied in the 1960’s and shows numerous interesting properties. Chaos is greatly sensitive to initial conditions and parameters and accurate duplication of it is impossible. Therefore, disarray systems have more useful and practical applications. Cryptography and chaos have some common features, the most prominent being sensitivity to parameters’ and variables’ changes.

One of the simple chaotic function \(f(x) = r^x^*(1-x^2) \) is used here, where \(r \) is the control parameter and this function is bounded to \(0 < r < 3 \). This function can be written for the iterative form \(x_{n+1} = r^x^*(1-x^2) \) where \(x_0 \) is used as a starting point. In this paper some of the important properties of this function that are of relevance are described.

Figure 1 shows a bifurcation diagram of this function. This is a plot of the parameter \('r' \) with the values that are obtained after some number of iterations i.e. \(f(x) \). For \(0 < r < 2 \), the function is seen to converge to a particular value after some number of iterations. As \('r' \) increases to just greater than 2 the graph is divided into two branches. Now the value of this function takes oscillation between two different values.

The x-axis gives the \('r' \) value and corresponding y-axis denotes the \(f(x) \) value. When the parameter \('r' \) further increases, the curve again bifurcate and now the value of the current oscillations are seen in between 4 values. For the \('r' \) in the current situation, the increase in branch becomes faster and faster, 8,16 then 32. Periodicity of \('r' \) is called “point of accumulation” exceeds a certain value gives a chaos to complete. It is found when \(r > 2.37 \), the chaos generated values are considered to be restricted to two different boundary. As the value of the \('r' \) increases, the two boundaries gave way to a single way. Also the range between which chaos values are yielded increases constantly as the value of \('r' \) is increased. Finally when \(r = 3 \), we observed that the chaos generating the full range of \([-1.25 to 1.25] \). Precisely at this point, we are interested in the chaos function. Therefore the disarray function that we investigate for applications in generation of multiple keys for Signcryption scheme in this paper is \(f(x) = 3x^*(1-x^2) \).

We are using this function for generation of multiple keys for the Signcryption scheme as it is simple to use, one Dimensional in nature and it also provides a high range for key generation which provides more security to the scheme proposed before. Hence we can also experiment with some complex chaotic functions for generation of chaotic keys in near future.

3. Proposed Scheme

The proposed signcryption scheme consists of four algorithm namely, key generation algorithm, chaotic multi-key generator, signcryption algorithm and unsigncryption algorithm. The parameters used in the proposed scheme are:

- \(p \): a large prime number.
- \(q \): a prime factor of \(p-1 \).
- \(g \): a integer with order \(q \ \text{mod} \ \text{p} \in [1,...,p-1] \)
n: total numbers of messages.
w: total no of receivers.

3.1 Key Generation

The private and public keys of sender and receiver are generated in the following manner:

Pair of sender’s key \((x, a)\) is computed as follow:

\[x : \text{Sender’s private key chosen randomly from } [1, \ldots, q-1] \]

\[y : \text{Sender’s public key computed as: } y_a = g^x \mod p \]

Pair of sender’s keys \((x_b, y_b)\) is computed as follow:

\[x : \text{Receiver’s private key chosen randomly from } [1, \ldots, q-1] \]

\[y : \text{Receiver’s public key computed as: } y_b = g^{x_b} \mod p \]

3.2 Chaotic multi-Key Generator (CMKG)

The chaotic multi-key generator CMKG proposed here is two tuple, where k is generated using receiver’s public key \((y_b)\) or sender’s public key \((y_a)\) and receiver’s private key \((x_b)\) (as shown below), and \(n\) is the total number of messages.

1) Calculate a message encryption key "\(k\)" for every receiver which is called the master key and Pick a random number \(x\) from \([1, \ldots, q]\).

\[xk = yb \mod p \] (1)

\[t = \text{hash}(k) \] (2)

2) Compute the secret multi-keys for block cipher algorithm using the CMKG. Suppose sender A wants to send \(n\) messages \((m_1, m_2, \ldots, m_n)\) to receiver B, he will generate \(n\) chaotic keys \((k_1, k_2, \ldots, k_n)\) for encryption as follow:

\[(K_1, K_2, \ldots, K_n) = \text{CMKG}(k, n) \] (3)

By using Chaotic function ,i.e \(K_i = r^*k_i - 1^*(1 - k_i - 1)\), we will find multiple keys. For \(i = 1 \ldots n\).

3.3 Signcryption Schemes

This section defines two multi messages signcryption schemes. First scheme is defined for the single recipient and the second is defined for the multi recipient. In describing the schemes, we use hash to denote the one way hash function, \(KH\) to denote keyed one way hash function, CMKG to denote chaotic multi-key generator and \((E, D)\) to denote private key encryption and decryption algorithm.

3.3.1 Multi Message Single Recipient Signcryption Scheme

The Graphic representation of the scheme is shown in Fig.2. To signcrypt the \(n\) messages, a user calculates \(n\) chaotic keys \((k_1, k_2, \ldots, k_n)\) used to encrypt the \(n\) messages \((m_1, m_2, \ldots, m_n)\) and then creates signature on \(n\) messages using his private key(\(x_b\)).

Signcryption algorithm:

1. Compute \(k = yb \mod p\) (4)
2. Compute \(t = \text{hash}(k)\) (5)
3. For \(n\) messages compute \(n\) chaotic keys using:

\[(k_1, k_2, \ldots, k_n) = \text{CMKG}(k, n) \] (6)

4. Compute cipher text \((c_1, c_2, \ldots, c_n)\) using encryption algorithm under chaotic keys \((k_1, k_2, \ldots, k_n)\) as follow:

\[c_i = E(k_i)(m_i) \text{ for } i = 1, \ldots, n \] (7)

5. Keyed hash values \((r_1, r_2, \ldots, r_n)\) for \(n\) messages using \(c\) as follow:

\[r_i = KH_t(m_i) \text{ for } i = 1, \ldots, n \] (8)

6. Compute multi message signature using:

\[S = x(xa + \sum r_i)^{-1} \mod q = 1 \] (9)

Sender sends signcrypted text \((c_1, r_1, s)\) to receiver. On the receiver side, receiver can recover \(k\) and \(c\) successfully by using sender’s public key and his private key. Receiver then computes the chaotic keys to decrypt the messages and recover the plain messages. He then checks the integrity of the messages by computing keyed hash values of decrypted messages under \(c\) and comparing it to the received keyed hash values \((r_1, r_2, \ldots, r_n)\). The unsigncryption algorithm is as follow:

U signcryption Algorithm:

1. Compute \(d = (y_a \cdot g^\sum r_i) \mod p\) (10)
2. Calculate \(k = dx_b \mod p\) (11)
3. Calculate \(t = \text{hash}(k)\) (12)
4. For n messages compute n chaotic keys using

$$(k_1, k_2, \ldots, k_n) = CMKG(k, n)$$ \hspace{1cm} (13)

5. Recover messages using

$$m_i = Dk_i (c_i) \quad \text{for } i = 1, \ldots, n$$ \hspace{1cm} (14)

6. Accept if $KH_t(m_i) = r_i$ for $i = 1, \ldots, n$ \hspace{1cm} (15)

3.3.2 Multi Message Multi Recipient Signcryption Scheme

Let the total numbers of receivers be w. For a receiver b_j, his jth key pair is (x_b, y_b) for $j = 1, \ldots, w$ the sender calculates k_i using j the jth user public key y_b and t_j using the one way hash function. He then computes n chaotic keys $(k_1j, k_2j, \ldots, k_nj)$ to encrypt n messages (m_1, m_2, \ldots, m_n) for the jth receiver. The sender then signs the n messages using his private key (x_a) and sends the signcrypted text to receiver j. The signcryption algorithm is as follow:

Signcryption Algorithm:

1. Calculate $k_j = (y_b)x \mod p$ \hspace{1cm} (16)
2. Calculate $t_j = \text{hash}(k_j)$ \hspace{1cm} (17)
3. For $i = 1, \ldots, n$
 a) $k_{ij} = CMKG(k_j, n)$ \hspace{1cm} (18)
 b) $c_i = E_k j (m_i)$ \hspace{1cm} (19)
 c) $r_{ij} = KH_t(m_i)$ \hspace{1cm} (20)
4. $s = x(xa + \sum_{n r_i = 1} mod q_i = 1$ \hspace{1cm} (21)

Sender sends signcrypted text (c_{ij}, r_{ij}, s) to receiver j.

The jth receiver recovers the parameters k_j, t_j using his private key x_b and sender's public key (y_a) and computes chaotic keys $(k_1j, k_2j, \ldots, k_nj)$ to decrypt the messages. After decrypting the messages, he then checks the integrity of the messages by computing keyed hash values of decrypted messages under t_j and comparing it to the received keyed hash values (r_1, r_2, \ldots, r_n). The unsigncryption algorithm is as follow:

Unsigncryption Algorithm:

1. Calculate $d = (y_a \cdot g \sum_{i=1}^n r_i) \mod p n$ \hspace{1cm} (22)
2. Calculate $k_j = d \cdot x_b \mod p$ \hspace{1cm} (23)
3. Calculate $t_j = \text{hash}(k_j)$ \hspace{1cm} (24)

4. Analysis of Proposed Scheme

In determining the keys for the Signcryption scheme, we would like to ensure that even if a potential hacker can get an idea of a key, he should not be able to calculate the other keys with the knowledge of the chaos functions. The proposed scheme is analysed for its correctness as follow:

4.1 Correctness of the Proposed Scheme

Messages (m_1, m_2, \ldots, m_n) can be recovered on receiver’s b_j side, for $j = 1, \ldots, w$, if the signcrypted text is generated by the sender, as the jth receiver can recover the parameters (k_j, t_j) by using his jth private key (x_b) and sender's public key (y_a) and can compute chaotic keys (k_1, k_2, \ldots, k_n) are used to decrypt the encrypted messages.

4.2 Evaluation

The chief merit of the above algorithm that the multiple keys generated by the algorithm are expected to be completely random and non-deterministic in nature.

5. Conclusion

In this paper, a new multi message chaos based signcryption schemes are proposed for both single recipient and multi recipient. The main idea behind the proposed scheme is to develop a chaotic key generator which generates chaotic keys for encryption algorithm. Due to chaotic nature of the keys, the proposed scheme provides very high security. It increases the strength of chaotic keys and therefore the strength of signcrypted text which is highly desirable when the high computational power systems are being used.

References

