
IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

117

OOOOnnnn----Line Analytical Line Analytical Line Analytical Line Analytical PPPProcessingrocessingrocessingrocessing (OLAP) (OLAP) (OLAP) (OLAP) on Networkson Networkson Networkson Networks

Sandeep Kharb1, Dr. J.S Sohal2

1Research Scholar, NIMS, Shobha Nagar, Jaipur

kharbs@rediffmail.com

2Ludhiana College of Technology, Ludhiana
lcet02ludhiana@rediffmail.com

Abstract
 We propose a framework for efficient OLAP on networks
with a focus on the most interesting kind, the topological
OLAP (called “T- OLAP”), which incurs topological
changes in the underlying networks. Topological OLAP
operations generate new networks from the original ones by
rolling up a subset of nodes chosen by certain constraint
criteria. The key challenge is to efficiently compute
measures for the newly generated networks and handle user
queries with varied constraints. The effective
computational techniques, Topological-Distributiveness is
proposed to achieve efficient query processing and cube
materialization. We also provide a Topological OLAP
query processing framework into which this technique is
weaved.
Keywords: OLAP, DBLP Query, Topological
Theorems.

1. Introduction

 OLAP is On-Line Analytical Processing has been a
critical and powerful component lying at the core of
the data warehouse systems. OLAP analysis helps
companies improve their performance by:
• Providing quick response times. Conducting fast,
concise analysis lets companies quickly get to the
“why” behind business issues so they can address
them in a timely manner
• Delivering powerful, built-in time trending analysis
that let users spot trends quickly
• Aligning complex data with the business so it is
easy to understand enterprise-wide
• Reducing the burden on IT by providing fast and
easy self-service access to information
• Delivering a scalable, efficient technology that is
quickly refreshed with current data, and economically

scales to satisfy the informational needs of many
users.
With the increasing popularity of network data, a
compelling question is the following: “Can we
perform efficient OLAP analysis on networks?” A
positive answer to this question would offer us the
capability of interactive, multi-dimensional and
multi-level analysis over tremendous amount of data
with complicated network structure.

2. Techniques and Framework

We propose one constraint-pushing technique based
on the unique characteristics of InfoNet OLAP, T-
Distributiveness and T-Monotonicity. The framework
taps the pow-erful techniques in traditional OLAP on
data cube and extends them further into the
information network setting. We use a simple
motivating example to introduce the two techniques.

DBLP Query Example:-
 Given the DBLP author
network, suppose the measure θ of interest is the
“total number of publications”, i.e., for a given node
v, denoted as θ (v) its total number of publications.
Depending on the level of network to which v
belongs, v could represent an individual researcher, a
research group, or an institution. A user could then
submit queries asking to return “all researchers v
such that θ (v) ≥ δ”. The measure in the above
example is in fact the ”Degree Centrality”. We use
CD (v) to denote this measure, Degree Centrality, for
a node v. To formally represent the concept of

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

118

networks at different levels, we need a definition of
OLAP network hierarchy
Definition 1 [OLAP Network Hierarchy] Given a
network G (V, E) and a partition Π of V (G) such that
Π G = {V1, V2,…. Vm}, m ≤ |V (G)|. A network G′
is called a higher-level network of G if G′ is obtained
by merging each Vi ∈ Π G, 1 ≤ i ≤ m into a higher-
level node v′i and the edges accordingly. G is then
called a lower-level network of G′ and denoted by G
≼ G′. For each v ∈ V (G), v′Ǐ is called the higher-
level node of v if v ∈ V Ǐ, which is denoted
as v ≼V v Ǐ
The topological OLAP operations could be
asynchronous. A higher-level network can be
obtained by merging portions of a lower-level one,
leaving the rest unchanged.

2.1 Topological Distributiveness

Suppose we have three levels of networks where
nodes represent individuals, research groups and
institutions in each network respectively. Instead of
individuals, users could query about the institutions
with the total number of publications beyond a
certain threshold δ. The straightforward way is to
construct the network G′′ at the institution level by
merging the constituent author nodes for each
institution from the original network G, and compute
the measure by summing up over each. For large
institutions, the computation could be costly. Now
suppose we have already computed the measure for
the network G′ at the research group level, can we
exploit this partial result to improve efficiency? It
turns out we can do that in this case due to the
distributiveness of this measure function. Basically,
the measure value of an institution can be correctly
obtained by summing up over the measure values
already computed for the research groups. Consider
any set of vertices S = {v1, v2,……, vk} and a
partition ΠS of S such that _S = {S1,S2,….., Sm}, m ≤
k. Each Si ∈ ΠS is merged to a new vertex v′i and the
whole set S is merged to a new vertex v′′ by a
topological OLAP roll-up operation. We also
overload the notation to denote ΠS = {v′1, v′2,… v′m }. It
is easy to verify that where ES is the set of edges with
both end vertices in S.

CD (v′′) = �∑ ����	
	� 	�
��� − 2	|��|

 =∑������∑ ����	
	� 	�
�� − 2������ − 2	��∏��

 =�∑ �����	
	∏� 	�
′��� − 2	��∏��

It is clear that, since addition and subtraction are
commutative, distributive and associative, the result
of computing by definition from the bottom-level
network is the same as the result of computing from
the intermediate-level one. Figure 4 is an illustration
of the computation. CD (v′′) is a total of 4+2+5+3 =
14 from G′′. We can get this measure directly from
the original network G by the given formula

�∑ ���� !	" 	�
��� − 2	|��| = (3 + 8 + 3 + 7 + 10 + 11

+ 7 + 5 + 6) − 2(2 + 3 + 3 + 1 + 2 + 4 + 1 + 2 + 4 +
1) = 14. We can also use partial measure results
computed for the intermediate network G′ and

compute by �∑ ���′� !	∏# 	 �
′��� − 2	��∏��| =

(8+12+14) −2 (3+1+6) = 14. The computational cost
is reduced to O (m + |EΠs |). This example shows that
the computation cost is greatly reduced by taking
advantage of partial measure results already
computed.

Figure 1 Topological Distributiveness for Degree
 Centrality

Figure 2 T-Distributiveness for Shortest Path

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

119

This kind of distributiveness of a measure function is
termed T-Distributiveness in this topological OLAP
setting.
Definition 2 [Topological-Distributiveness] Given a
measure θ and three attributed networks G, G′ and
G′′ obtained by T-OLAP operations such that G ≼ G′
≼ G′′, suppose we have available θ (G) and θ (G′),
then θ is Topological Distributive if there exists a
function g such that θ (G′′) = g(θ (G′)) = g(θ (G)).
Although this example of ”Degree Centrality” may
seem simple, it is interesting to note that other more
complicated measures, even those involving
topological structures, are also Topological
distributive. For instance, it can be shown that the
measure of ”Shortest Path” is also T-distributive.
Shortest path computation is a key problem
underlying many centrality measures, such as
Closeness Centrality and Between’s Centrality, as
well as important network measures like Diameter.
Topological distributiveness for Shortest Paths It is
well-known that the shortest path problem has the
property of optimal substructures. In fact, shortest-
path algorithms typically rely on the property that a
shortest path between two vertices contains other
shortest paths within it. Formally, we have the
following lemma, the proof of which is omitted and
readers are referred to.
Lemma 1. Given an attributed network G with a
weight attribute on edges given by function w : E(G)
→ R, let p = ‹v1, v2,….,vk› be a shortest path from
vertex v1 to vertex vk and, for any i and j such that 1 ≤
i ≤ j ≤ k, let pij = ‹vi, vi+1,…. vj› be the sub-path of p
from vertex vi to vertex vj . Then, pij is a shortest path
from vi to vj.
Rationale: The significance of the optimal
substructure property of the shortest path problem is
that it means the measure is Topological distributive,
thus providing an efficient way to compute the
measure for Topological OLAP roll-up operations.
We show our algorithm in Algorithm 2. The main
algorithm is Algorithm 1 in which we show that,
instead of computing from scratch from the lowest
network G, we are actually able to compute the
measure network θ (G′′) for G′′ from the measure
network θ (G′) already computed for an intermediate
network G′.
In Algorithm 1, in Line 3, we first compute all
shortest paths from the single source v′′ to all other
vertices. From Lines 4 to 7, we update the shortest
path between each pair of vertices (u, v) by picking
the smaller-weight one between the existing shortest
path between them and the one which passes through
the new vertex v′′. In Algorithm 2, in Lines 1 and 2,

we first set the shortest path weight between v′′ and
other vertices to be a maximum weight value. From
lines 3 to 6, we calculate the shortest paths between
v′′ and every other vertex u by picking the one with
the minimum weight among all the shortest paths
between vertices in S′ and u. It is easy to verify that
the time complexity of computational cost of Shortest
Path Local is O(|S′| · |V (G) \ S|). The time
complexity of the entire algorithm is therefore O(|V
(G)|2). The correctness of the entire algorithm can be
seen from the observation that for any pair of vertices
u and v, if the final shortest path pu,v in G′′ does not
pass through the new vertex v′′, then it should also be
the shortest path between u and v in the lower-level
network G′. Therefore, the final shortest path pu,v in
G′′ must be the smaller-weight one between the
existing shortest path between them in G′ and the
new shortest path passing through v′′. By the optimal
substructure property in Lemma 1, the new shortest
path passing through v′′ must be the union of the two
shortest paths, one between u and v′′, and the other
between v′′ and v. When computing the shortest paths
between v′′ and other vertices, we do not use standard
single source shortest path algorithms. Instead,
Algorithm Shortest Path Local harnesses the
Topological distributiveness of the shortest path
measure.
Theorem 1 Given an attributed networkG with edge
weights, G′′ is obtained by mering a set of vertices S
={v1,v2,…….vk},S V (G) in a Topological OLAP
roll-up operation to a new vertex v′′, and G′ is
obtained by partitioning S by Π = {S1, S2,…. Sk} and
merging the vertices in each Si into v′i ε S′; 1 ≤ i ≤ k,
then given the shortest path measure network θ(G′),
Shortest Path Local computes the shortest paths
between v′′ and all vertices in V (G) \ S.

Algorithm 1 Shortest Path Main

Input: S′, G and θ (G′)
 Output: θ (G′′)

1: θ (G′′) ← θ (G′)
2: Merge S′ into v′′ and add v′′ to G′′;
3: θ (G′′) ← ShortestP ath Local(S′; G; θ (G′′));
4: for each u ε V (G′′); u ≠ v′′
5: for each v ε V (G′′); v ε ≠v′′
6: if w(puv) > w(puv′) + w(pv′v)
7: w(puv) ← w(puv′) + w(pv′v)
8: return θ (G′′);

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

120

Algorithm 2 Shortest Path Local

Input: S′, G and θ (G′′)
 Output: θ (G′′)

1: for each u ε V (G) \ S′
2: w(pv′′u) ← +∞;
3: for each u ε V (G) \ S′
4: for each v ε S′
5: if w(pvu) < w(pv′′u)
6: w(pv′′u) ← w(pvu);
7:return θ (G′′);

3 Experimental Results

3.1 Synthetic Data

All the experiments are conducted on a Pentium(R)
3GHz with 1G RAM running Windows XP
professional Service Pack2.
Topological Distributiveness We perform
experiments for two measures, Degree Centrality and
Closeness Centrality on synthetic data to demonstrate
the power of Topological distributiveness. Since our
aim is to provide studies on measures for InfoNet
OLAP in general, our synthetic data networks are not
confined to specific types and statistical properties.
Our synthetic data networks are generated in a
random fashion such that (1) the entire network is
connected, (2) the vertices have an average degree of
d and (3) the edges have an average weight of w.
Given a network G, users can choose a subset S of
vertices to roll-up into a single vertex v′ and compute
the measure network for the new network G′. Such an
OLAP operation is called a user OLAP request. We
give a model for incoming user OLAP requests as
follows. For a network G, we recursively partition G
into π connected non-overlapping components of
equal number of vertices, until each resulting
component is of a predefined minimum number of
vertices, i.e., suppose |V (G)| = 1024 and π = 4, we
first partition G into 4 connected sub-graphs each
with 256 vertices, and recursively partition the 4 sub-
graphs. The partition process identifies a sequence T
of connected sub-graphs of the original network G.
Now we reverse the sequence T and let the resulting
sequence be T′. Consequently, observe that, for any
sub-graph Q in sequence T′, all the sub-graphs of Q
appear before Q. We model the sequence of incoming
user OLAP requests as the sub-graph sequence T′,
i.e., the i-th user OLAP request would take the
original network G and choose to merge the i-th
subgraph in T′ into a single vertex and thus obtain a

higher-level network G′. The task then is to compute
the measure network θ (G′) for G′.
Our baseline algorithm for comparison is denoted as
NaiveOLAP. For each user OLAP request, the naive
algorithm would first merge the corresponding
subgraph into a single vertex and then compute the
measure network for the new graph directly from the
original networkG. Our approach, called Topological
distributive OLAP, would take advantage of the
Topological distributiveness of the measure and take
the measures already computed for π lower level
networks as input to compute the new measure
network. In other words, if put in traditional OLAP
terminology, we are considering the best scenario
here in which, when computing the measure for a
cuboids, all the cuboids immediately below have
already been materialized.
Degree Centrality The measure of Degree
Centrality has the nice property of Topological
distributiveness. TD-OLAP could therefore make use
of the measures computed for the lower-level
networks and gain significant efficiency boost than
the NaiveOLAP.
The average vertex degree is set to d = 5. The
partition size π is set as 4 such that each high level
vertex has 4 lower-level children vertices.
Figure 3 shows the running time comparison for the
two approaches as the number of vertices for the
original network increases. In this case, the original
network G is recursively partitioned for a recursion
depth of two with a partition size of 4. The running
time is the result of summing up the computation cost
for all the user OLAP requests in T′. It can be
observed that with Topological distributiveness the
measure network computation cost increases much
slower than the NaiveOLAP approach.
Figure 4 shows that, when the total number of
vertices of the network G is fixed to 4096 and the
average vertex degree is set to 5, how the granularity
of Topological OLAP operations can affect the
running time of both approaches. As the number of
partitions increases, the size of the set of vertices to
be merged in the T-OLAP roll-up get smaller, which
means the user, is examining the network with a finer
granularity. Since the measure of degree centrality
has a small computational cost, both approaches have
in this case rather slow increase in the running time.
However, notice that the TD-OLAP still features a
flatter growth curve compared with the NaiveOLAP
approach.
Closeness Centrality The measure of Closeness
Centrality has the nice property of Topological
distributiveness. As such, TD-OLAP would use the

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

121

algorithms as shown in Algorithm 1 to assemble the
measures computed for the lower-level networks and
save tremendous computational cost than the
NaiveOLAP which simply merge subsets of vertices
and run costly shortest path algorithm to compute the
new measure network from scratch. In this example,
the average degree is set to d = 5 and the average
weight on edges is set as w = 10. The partition size π
is set as 4 such that each high level vertex has 4
lower-level children vertices.
Figure 5 shows the running time comparison for the
two approaches as the number of vertices for the
original network increases. In this case, the original
network G is recursively partitioned for a recursion
depth of two with a partition size of 4. The running
time is the result of summing up the computation cost
for all the 20 user OLAP requests in T′. It is clear
that, by harnessing Topological distributiveness, the
measure networks can be computed much more
efficiently, almost in time linear to the size of the
original data network, than the naive OLAP
approach.
Figure 6 shows how the granularity of the
Topological OLAP roll-up can impact the running
time for both approaches. As the number of partitions
increases, the original network is partitioned into
components of increasingly smaller sizes. The figure
shows the average cost for computing the new
measure network for one OLAP request as users
choose to merge smaller set of vertices in the T-
OLAP operations. The network in this case contains
1024 vertices. As shown in the figure, for TD-OLAP,
the granularity hardly affects the computational cost
since the

Figure 3 Run Time Comparison

Figure 4 Topological-OLAP Granularities

Figure 5 Run Time Comparison

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

122

Figure 6 Topological-OLAP Granularity

Complexity of the function to combine the measures
of lower-level networks to obtain the new one is in
general very low compared with the function to
compute the measure itself..As the partition size only
affect the number of lower-level vertices to taken into
consideration, the running time therefore remains
steady. On the other hand, as fewer vertices are
merged with increasing number of partitions, the
NaiveOLAP has to compute the measure network
with an input network of greater size. Hence the
increasing running time for the NaiveOLAP

6 Conclusions

In this paper we have performed a framework study
for topological network OLAP. In particular, we
propose a technique in a constraint-pushing
framework, Topological Distributiveness, to achieve
efficient query processing and cube materialization.
We put forward a query processing framework
incorporating in this technique. Our experiments on
both real and synthetic data networks have shown the
effectiveness and efficiency of the application of our
techniques and framework to the measures.

References

[1] G. Flake, S. Lawrence, C. L. Giles, and F.
Coetzee. Self-organization and identification
of web communities. IEEE Computer,
35:66–71, 2002.

[2] D. Gibson, R. Kumar, and A. Tomkins.
Discovering large dense subgraphs in
massive graphs. In VLDB, pages 721–732,
2005.

[3] J. Gray, S. Chaudhuri, A. Bosworth, A.
Layman, D. Reichart, M. Venkatrao, F.
Pellow, and H. Pirahesh. Data cube: A
relational aggregation operator generalizing
group-by, cross-tab, and sub totals. Data
Min. Knowl. Disc., 1(1):29–53, 1997.

[4] A. Gupta and I. S. Mumick, editors.
Materialized Views: Techniques,
Implementations, and Applications. MIT
Press, 1999.

[5] I. Herman, G. Melanc¸on, and M. S.
Marshall. Graph visualization and
navigation in information visualization: A
survey. IEEE Trans. Vis. Comput. Graph.,
6(1):24–43, 2000.

[6] D. Jensen and J. Neville. Data mining in
networks. In Papers of the Symp. Dynamic
Social Network Modeling and Analysis,
National Academy Press, 2002.

[7] R. Jin, Y. Xiang, N. Ruan, and H. Wang.
Efficiently answering reachability queries on
very large directed graphs. In SIGMOD ’08:
Proceedings of the 2008 ACM SIGMOD
international conference on Management of
data, pages 595–608, New York, NY, USA,
2008.ACM.

[8] J. M. Kleinberg, R. Kumar, P. Raghavan, S.
Rajagopalan, and A. Tomkins. The web as a
graph: Measurements, models, and methods.
In Proc. Int. Conf. Computing and Combina-
torics (COCOON’99), pages 1–17, Tokyo,
Japan, July 1999.

[9] S. Raghavan and H. Garcia-Molina.
Representing web graphs. In ICDE, pages
405–416,2003.

[10] J. Sun, Y. Xie, H. Zhang, and C. Faloutsos.
Less is more: Sparse graph mining with
compact matrix decomposition. Stat. Anal.
Data Min., 1(1):6–22, 2008.

[11] Y. Tian, R. A. Hankins, and J. M. Patel.
Efficient aggregation for graph
summarization. In SIGMOD Conference,
pages 567–580, 2008.

[12] N. Wang, S. Parthasarathy, K.-L. Tan, and
A. K. H. Tung. CSV: visualizing and mining
cohesive subgraphs. In SIGMOD
Conference, pages 445–458, 2008.

[13] D. Archambault, T. Munzner, and D. Auber.
TopoLayout: Multilevel graph layout by

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

123

topological features. IEEE Trans. Vis.
Comput. Graph., 13(2):305–317, 2007.

[14] K. S. Beyer and R. Ramakrishnan. Bottom-
up computation of sparse and iceberg cubes.
In SIGMOD Conference, pages 359–370,
1999.

[15] P. Boldi and S. Vigna. The WebGraph
framework I: Compression techniques. In
WWW, pages 595–602, 2004.

[16] D. Chakrabarti and C. Faloutsos. Graph
mining: Laws, generators, and algorithms.
ACM Comput. Surv., 38(1), 2006.

[17] C. Chen, X. Yan, F. Zhu, J. Han, and P. S.
Yu. Graph OLAP: Towards online analytical
processing on graphs. In Proc. 2008 Int.
Conf. Data Mining(ICDM), 2008.

[18] 16. T. H. Cormen, C. E. Leiserson, R. L.
Rivest, and C. Stein, editors. Introduction to
Algorithms. MIT Press, 2001.

[19] M. Fang, N. Shivakumar, H. Garcia-Molina,
R. Motwani, and J. D. Ullman.
Computingiceberg queries efficiently. In
VLDB, pages 299–310, 1998.

[20] Efficient Topological OLAP on Information
Networks 15

[21] J. Leskovec, J. Kleinberg, and C. Faloutsos.
Graphs over time: Densification laws,
shrinking diameters and possible
explanations. In Proc. 2005 ACM SIGKDD
Int. Conf. on Knowledge Discovery and
Data Mining (KDD’05), pages 177–187,
Chicago, IL, Aug. 2005.

[22] S. Navlakha, R. Rastogi, and N. Shrivastava.
Graph summarization with bounded error. In
SIGMOD Conference, pages 419–432,
2008.

[23] M. E. J. Newman. The structure and
function of complex networks. SIAM
Review, 45:167–256, 2003.

[24] A. Y. Ng, M. I. Jordan, and Y. Weiss. On
spectral clustering: Analysis and an
algorithm. In NIPS, pages 849–856, 2001.

[25] R. T. Ng, L. V. S. Lakshmanan, J. Han, and
A. Pang. Exploratory mining and pruning
optimizations of constrained association
rules. In SIGMOD Conference, pages 13–
24, 1998.

