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Abstract 
 We propose a framework for efficient OLAP on networks 
with a focus on the most interesting kind, the topological 
OLAP (called “T- OLAP”), which incurs topological 
changes in the underlying networks. Topological OLAP 
operations generate new networks from the original ones by 
rolling up a subset of nodes chosen by certain constraint 
criteria. The key challenge is to efficiently compute 
measures for the newly generated networks and handle user 
queries with varied constraints. The effective 
computational techniques, Topological-Distributiveness is 
proposed to achieve efficient query processing and cube 
materialization. We also provide a Topological OLAP 
query processing framework into which this technique is 
weaved.  
Keywords: OLAP, DBLP Query, Topological 
Theorems. 
 
1. Introduction 

 

 OLAP is On-Line Analytical Processing has been a 
critical and powerful component lying at the core of 
the data warehouse systems. OLAP analysis helps 
companies improve their performance by: 
• Providing quick response times. Conducting fast, 
concise analysis lets companies quickly get to the 
“why” behind business issues so they can address 
them in a timely manner  
• Delivering powerful, built-in time trending analysis   
that let users spot trends quickly 
• Aligning complex data with the business so it is 
easy to understand enterprise-wide 
• Reducing the burden on IT by providing fast and 
easy self-service access to information 
• Delivering a scalable, efficient technology that is 
quickly refreshed with current data, and economically 

scales to satisfy the informational needs of many 
users.  
With the increasing popularity of network data, a 
compelling question is the following: “Can we 
perform efficient OLAP analysis on networks?” A 
positive answer to this question would offer us the 
capability of interactive, multi-dimensional and 
multi-level analysis over tremendous amount of data 
with complicated network structure. 
 

2. Techniques and Framework 

 

We propose one constraint-pushing technique based 
on the unique characteristics of InfoNet OLAP, T-
Distributiveness and T-Monotonicity. The framework 
taps the pow-erful techniques in traditional OLAP on 
data cube and extends them further into the 
information network setting. We use a simple 
motivating example to introduce the two techniques. 
 
DBLP Query Example:- 
                                      Given the DBLP author 
network, suppose the measure θ of interest is the 
“total number of publications”, i.e., for a given node 
v, denoted as θ (v) its total number of publications. 
Depending on the level of network to which v 
belongs, v could represent an individual researcher, a 
research group, or an institution. A user could then 
submit queries asking to return “all researchers v 
such that θ (v) ≥ δ”. The measure in the above 
example is in fact the ”Degree Centrality”. We use 
CD (v) to denote this measure, Degree Centrality, for 
a node v. To formally represent the concept of 
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networks at different levels, we need a definition of 
OLAP network hierarchy 
Definition 1 [OLAP Network Hierarchy]  Given a 
network G (V, E) and a partition Π of V (G) such that 
Π G = {V1, V2,…. Vm}, m ≤ |V (G)|. A network G′ 
is called a higher-level network of G if G′ is obtained 
by merging each Vi ∈ Π G, 1 ≤ i ≤ m into a higher-
level node v′i and the edges accordingly. G is then 
called a lower-level network of G′ and denoted by G 
≼ G′. For each v ∈ V (G), v′Ǐ is called the higher-
level node of v if v ∈ V Ǐ, which is denoted  
as v ≼V v Ǐ 
The topological OLAP operations could be 
asynchronous. A higher-level network can be 
obtained by merging portions of a lower-level one, 
leaving the rest unchanged. 
 

2.1 Topological Distributiveness 

 

Suppose we have three levels of networks where 
nodes represent individuals, research groups and 
institutions in each network respectively. Instead of 
individuals, users could query about the institutions 
with the total number of publications beyond a 
certain threshold δ. The straightforward way is to 
construct the network G′′ at the institution level by 
merging the constituent author nodes for each 
institution from the original network G, and compute 
the measure by summing up over each. For large 
institutions, the computation could be costly. Now 
suppose we have already computed the measure for 
the network G′ at the research group level, can we 
exploit this partial result to improve efficiency? It 
turns out we can do that in this case due to the 
distributiveness of this measure function. Basically, 
the measure value of an institution can be correctly 
obtained by summing up over the measure values 
already computed for the research groups. Consider 
any set of vertices S = {v1, v2,……, vk} and a 
partition ΠS of S such that _S = {S1,S2,….., Sm}, m ≤ 
k. Each Si ∈ ΠS is merged to a new vertex v′i and the 
whole set S is merged to a new vertex v′′ by a 
topological OLAP roll-up operation. We also 
overload the notation to denote ΠS = {v′1, v′2,… v′m }. It 
is easy to verify that where ES is the set of edges with 
both end vertices in S. 
 

CD (v′′) = �∑ ����	
	� 	�
��� − 2	|��| 

       =∑������∑ ����	
	� 	�
�� − 2������ − 2	��∏��  

       =�∑ �����	
	∏� 	�
′��� − 2	��∏�� 
 

It is clear that, since addition and subtraction are 
commutative, distributive and associative, the result 
of computing by definition from the bottom-level 
network is the same as the result of computing from 
the intermediate-level one. Figure 4 is an illustration 
of the computation. CD (v′′) is a total of 4+2+5+3 = 
14 from G′′. We can get this measure directly from 
the original network G by the given formula 

�∑ ���� !	" 	�
��� − 2	|��|  = (3 + 8 + 3 + 7 + 10 + 11 

+ 7 + 5 + 6) − 2(2 + 3 + 3 + 1 + 2 + 4 + 1 + 2 + 4 + 
1) = 14. We can also use partial measure results 
computed for the intermediate network G′ and 

compute by �∑ ���′� !	∏# 	 �
′��� − 2	��∏��| = 

(8+12+14) −2 (3+1+6) = 14. The computational cost 
is reduced to O (m + |EΠs |). This example shows that 
the computation cost is greatly reduced by taking 
advantage of partial measure results already 
computed. 

 

Figure 1 Topological Distributiveness for Degree  
           Centrality  
 

 

Figure 2 T-Distributiveness for Shortest Path 
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This kind of distributiveness of a measure function is 
termed T-Distributiveness in this topological OLAP 
setting. 
Definition 2 [Topological-Distributiveness] Given a 
measure θ and three attributed networks G, G′ and 
G′′ obtained by T-OLAP operations such that G ≼ G′ 
≼ G′′, suppose we have available θ (G) and θ (G′), 
then θ is Topological Distributive if there exists a 
function g such that θ (G′′) = g(θ (G′)) = g(θ (G)). 
Although this example of ”Degree Centrality” may 
seem simple, it is interesting to note that other more 
complicated measures, even those involving 
topological structures, are also Topological 
distributive. For instance, it can be shown that the 
measure of ”Shortest Path” is also T-distributive. 
Shortest path computation is a key problem 
underlying many centrality measures, such as 
Closeness Centrality and Between’s Centrality, as 
well as important network measures like Diameter. 
Topological distributiveness for Shortest Paths It is 
well-known that the shortest path problem has the 
property of optimal substructures. In fact, shortest-
path algorithms typically rely on the property that a 
shortest path between two vertices contains other 
shortest paths within it. Formally, we have the 
following lemma, the proof of which is omitted and 
readers are referred to. 
Lemma 1. Given an attributed network G with a 
weight attribute on edges given by function w : E(G) 
→ R, let p = ‹v1, v2,….,vk› be a shortest path from 
vertex v1 to vertex vk and, for any i and j such that 1 ≤ 
i ≤ j ≤ k, let pij = ‹vi, vi+1,…. vj› be the sub-path of p 
from vertex vi to vertex vj . Then, pij is a shortest path 
from vi to vj. 
Rationale: The significance of the optimal 
substructure property of the shortest path problem is 
that it means the measure is Topological distributive, 
thus providing an efficient way to compute the 
measure for Topological OLAP roll-up operations.    
We show our algorithm in Algorithm 2. The main 
algorithm is Algorithm 1 in which we show that, 
instead of computing from scratch from the lowest 
network G, we are actually able to compute the 
measure network θ (G′′) for G′′ from the measure 
network θ (G′) already computed for an intermediate 
network G′. 
In Algorithm 1, in Line 3, we first compute all 
shortest paths from the single source v′′ to all other 
vertices. From Lines 4 to 7, we update the shortest 
path between each pair of vertices (u, v) by picking 
the smaller-weight one between the existing shortest 
path between them and the one which passes through 
the new vertex v′′. In Algorithm 2, in Lines 1 and 2, 

we first set the shortest path weight between v′′ and 
other vertices to be a maximum weight value. From 
lines 3 to 6, we calculate the shortest paths between 
v′′ and every other vertex u by picking the one with 
the minimum weight among all the shortest paths 
between vertices in S′ and u. It is easy to verify that 
the time complexity of computational cost of Shortest 
Path Local is O(|S′| · |V (G) \ S|). The time 
complexity of the entire algorithm is therefore O(|V 
(G)|2). The correctness of the entire algorithm can be 
seen from the observation that for any pair of vertices 
u and v, if the final shortest path pu,v in G′′ does not 
pass through the new vertex v′′, then it should also be 
the shortest path between u and v in the lower-level 
network G′. Therefore, the final shortest path pu,v in 
G′′ must be the smaller-weight one between the 
existing shortest path between them in G′ and the 
new shortest path passing through v′′. By the optimal 
substructure property in Lemma 1, the new shortest 
path passing through v′′ must be the union of the two 
shortest paths, one between u and v′′, and the other 
between v′′ and v. When computing the shortest paths 
between v′′ and other vertices, we do not use standard 
single source shortest path algorithms. Instead, 
Algorithm Shortest Path Local harnesses the 
Topological distributiveness of the shortest path 
measure. 
Theorem 1 Given an attributed networkG with edge 
weights, G′′ is obtained by mering a set of vertices S 
={v1,v2,…….vk},S  V (G) in a Topological OLAP 
roll-up operation to a new vertex v′′, and G′ is 
obtained by partitioning S by Π = {S1, S2,…. Sk} and 
merging the vertices in each Si into v′i ε  S′; 1 ≤ i ≤ k, 
then given the shortest path measure network θ(G′), 
Shortest Path Local computes the shortest paths 
between v′′ and all vertices in V (G) \ S. 
 
Algorithm 1 Shortest Path Main 
 

Input: S′, G and θ (G′) 
                         Output: θ (G′′) 
 
1: θ (G′′) ← θ (G′) 
2: Merge S′ into v′′ and add v′′ to G′′; 
3: θ (G′′) ← ShortestP ath Local(S′; G; θ (G′′)); 
4: for each u ε V (G′′); u ≠ v′′ 
5: for each v ε V (G′′); v ε ≠v′′ 
6: if w(puv) > w(puv′ ) + w(pv′v) 
7: w(puv) ← w(puv′ ) + w(pv′v) 
8: return θ (G′′); 
 
 
 



IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, September 2012 
ISSN (Online):  2231 –5268                                   
www.ijcsms.com 

IJCSMS 
www.ijcsms.com 

120 

 

Algorithm 2 Shortest Path Local 
 

Input: S′, G and θ (G′′) 
                         Output: θ (G′′) 
 
1: for each u ε V (G) \ S′ 
2: w(pv′′u) ← +∞; 
3: for each u ε V (G) \ S′ 
4: for each v ε S′ 
5: if w(pvu) < w(pv′′u) 
6: w(pv′′u) ← w(pvu); 
7:return θ (G′′); 
 

3 Experimental Results 

3.1 Synthetic Data 

All the experiments are conducted on a Pentium(R) 
3GHz with 1G RAM running Windows XP 
professional Service Pack2. 
Topological Distributiveness We perform 
experiments for two measures, Degree Centrality and 
Closeness Centrality on synthetic data to demonstrate 
the power of Topological distributiveness. Since our 
aim is to provide studies on measures for InfoNet 
OLAP in general, our synthetic data networks are not 
confined to specific types and statistical properties. 
Our synthetic data networks are generated in a 
random fashion such that (1) the entire network is 
connected, (2) the vertices have an average degree of 
d and (3) the edges have an average weight of w. 
Given a network G, users can choose a subset S of 
vertices to roll-up into a single vertex v′ and compute 
the measure network for the new network G′. Such an 
OLAP operation is called a user OLAP request. We 
give a model for incoming user OLAP requests as 
follows. For a network G, we recursively partition G 
into π connected non-overlapping components of 
equal number of vertices, until each resulting 
component is of a predefined minimum number of 
vertices, i.e., suppose |V (G)| = 1024 and π = 4, we 
first partition G into 4 connected sub-graphs each 
with 256 vertices, and recursively partition the 4 sub-
graphs. The partition process identifies a sequence T 
of connected sub-graphs of the original network G. 
Now we reverse the sequence T and let the resulting 
sequence be T′. Consequently, observe that, for any 
sub-graph Q in sequence T′, all the sub-graphs of Q 
appear before Q. We model the sequence of incoming 
user OLAP requests as the sub-graph sequence T′, 
i.e., the i-th user OLAP request would take the 
original network G and choose to merge the i-th 
subgraph in T′ into a single vertex and thus obtain a 

higher-level network G′. The task then is to compute 
the measure network θ (G′) for G′. 
Our baseline algorithm for comparison is denoted as 
NaiveOLAP. For each user OLAP request, the naive 
algorithm would first merge the corresponding 
subgraph into a single vertex and then compute the 
measure network for the new graph directly from the 
original networkG. Our approach, called Topological 
distributive OLAP, would take advantage of the 
Topological distributiveness of the measure and take 
the measures already computed for π lower level 
networks as input to compute the new measure 
network. In other words, if put in traditional OLAP 
terminology, we are considering the best scenario 
here in which, when computing the measure for a 
cuboids, all the cuboids immediately below have 
already been materialized. 
Degree Centrality The measure of Degree 
Centrality has the nice property of Topological 
distributiveness. TD-OLAP could therefore make use 
of the measures computed for the lower-level 
networks and gain significant efficiency boost than 
the NaiveOLAP. 
The average vertex degree is set to d = 5. The 
partition size π is set as 4 such that each high level 
vertex has 4 lower-level children vertices. 
Figure 3 shows the running time comparison for the 
two approaches as the number of vertices for the 
original network increases. In this case, the original 
network G is recursively partitioned for a recursion 
depth of two with a partition size of 4. The running 
time is the result of summing up the computation cost 
for all the user OLAP requests in T′. It can be 
observed that with Topological distributiveness the 
measure network computation cost increases much 
slower than the NaiveOLAP approach. 
Figure 4 shows that, when the total number of 
vertices of the network G is fixed to 4096 and the 
average vertex degree is set to 5, how the granularity 
of Topological OLAP operations can affect the 
running time of both approaches. As the number of 
partitions increases, the size of the set of vertices to 
be merged in the T-OLAP roll-up get smaller, which 
means the user, is examining the network with a finer 
granularity. Since the measure of degree centrality 
has a small computational cost, both approaches have 
in this case rather slow increase in the running time. 
However, notice that the TD-OLAP still features a 
flatter growth curve compared with the NaiveOLAP 
approach. 
Closeness Centrality The measure of Closeness 
Centrality has the nice property of Topological 
distributiveness. As such, TD-OLAP would use the 
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algorithms as shown in Algorithm 1 to assemble the 
measures computed for the lower-level networks and 
save tremendous computational cost than the 
NaiveOLAP which simply merge subsets of vertices 
and run costly shortest path algorithm to compute the 
new measure network from scratch. In this example, 
the average degree is set to d = 5 and the average 
weight on edges is set as w = 10. The partition size π 
is set as 4 such that each high level vertex has 4 
lower-level children vertices. 
Figure 5 shows the running time comparison for the 
two approaches as the number of vertices for the 
original network increases. In this case, the original 
network G is recursively partitioned for a recursion 
depth of two with a partition size of 4. The running 
time is the result of summing up the computation cost 
for all the 20 user OLAP requests in T′. It is clear 
that, by harnessing Topological distributiveness, the 
measure networks can be computed much more 
efficiently, almost in time linear to the size of the 
original data network, than the naive OLAP 
approach. 
Figure 6 shows how the granularity of the 
Topological OLAP roll-up can impact the running 
time for both approaches. As the number of partitions 
increases, the original network is partitioned into 
components of increasingly smaller sizes. The figure 
shows the average cost for computing the new 
measure network for one OLAP request as users 
choose to merge smaller set of vertices in the T-
OLAP operations. The network in this case contains 
1024 vertices. As shown in the figure, for TD-OLAP, 
the granularity hardly affects the computational cost 
since the  

 

Figure 3 Run Time Comparison 

 

 

Figure 4 Topological-OLAP Granularities 

 

 

 

Figure 5 Run Time Comparison 
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Figure 6 Topological-OLAP Granularity 

 

Complexity of the function to combine the measures 
of lower-level networks to obtain the new one is in 
general very low compared with the function to 
compute the measure itself..As the partition size only 
affect the number of lower-level vertices to taken into 
consideration, the running time therefore remains 
steady. On the other hand, as fewer vertices are 
merged with increasing number of partitions, the 
NaiveOLAP has to compute the measure network 
with an input network of greater size. Hence the 
increasing running time for the NaiveOLAP 
 

6 Conclusions 

In this paper we have performed a framework study 
for topological network OLAP. In particular, we 
propose a technique in a constraint-pushing 
framework, Topological Distributiveness, to achieve 
efficient query processing and cube materialization. 
We put forward a query processing framework 
incorporating in this technique. Our experiments on 
both real and synthetic data networks have shown the 
effectiveness and efficiency of the application of our 
techniques and framework to the measures. 
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