
IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

171

A A A A Hybrid Approach Using Hybrid Approach Using Hybrid Approach Using Hybrid Approach Using C C C C Mean and Mean and Mean and Mean and CART CART CART CART for for for for

Classification in Classification in Classification in Classification in Data MiningData MiningData MiningData Mining

Jasbir Malik 1, Rajkumar2

 1M Tech (scholar), CSE Department, JIET, JIND, Kurukshetra University, Kurukshetra
malik_jasbir@ymail.com

 2Assistant Professor, CSE Department, JIET, JIND, Kurukshetra University, Kurukshetra

rajshira@gmail.com

Abstract
Data Mining is a field of search and researches of
data. Mining the data means fetching out a piece of
data from a huge data block. The basic work in the
data mining can be categorized in two subsequent
ways. One is called classification and the other is
called clustering. Although both refers to some kind of
same region but still there are differences in both the
terms. The classification of the data is only possible if
you have modified and identified the clusters. In the
presented research paper, our aim is to find out the
maximum number of clusters in a specified region by
applying the area searching algorithms. Classification
is always based on two things. a)The area which you
choose for the classification that is the cluster region
.b)The kind of dataset which you are going to apply on
the selected region .To increase the accuracy of the
searching technique, any one would need to focus on
two things . a)Whether the data set has been cauterized
in proper manner or not .b)If the clusters are defined ,
whether they fit into the appropriate classified area or
not .
Keywords: Data Mining, C-mean, CART, KDD,
SVM-Algorithm.

1. Introduction

With the enormous amount of data stored in
files, databases, and other repositories, it is
increasingly important, if not necessary, to
develop powerful means for analysis and perhaps
interpretation of such data and for the extraction
of interesting knowledge that could help in
decision-making. Data Mining, also popularly
known as Knowledge Discovery in Databases
(KDD), refers to the nontrivial extraction of
implicit, previously unknown and potentially
useful information from data in databases. Data
mining refers to extracting or “mining”
knowledge from large amounts of data.

Classification (technique to analyses the frequent
item sets) is one of the major fields in the area of
extracting knowledge from vast data. A frequent
item set typically refers to a set of items that
frequently appear together in a transactional data
set, such as milk and bread (Han & Kamber,
2001). In this chapter, we will briefly review
about data mining, its architecture,
functionalities, classification, methods of
classification etc. We are in an age often referred
to as the information age. In this information
age; because we believe that information leads to
power and success, and thanks to sophisticated
technologies such as computers, satellites, etc.,
we have been collecting tremendous amounts of
information. Initially, with the advent of
computers and means for mass digital storage,
we started collecting and storing all sorts of data,
counting on the power of computers to help sort
through this amalgam of information.
Unfortunately, these massive collections of data
stored on disparate structures very rapidly
became overwhelming. This initial chaos has led
to the creation of structured databases and
database management systems (DBMS). The
efficient database management systems have
been very important assets for management of a
large corpus of data and especially for effective
and efficient retrieval of particular information
from a large collection whenever needed. The
proliferation of database management systems
has also contributed to recent massive gathering
of all sorts of information. Today, we have far
more information than we can handle: from
business transactions and scientific data, to
satellite pictures, text reports and military
intelligence. Information retrieval is simply not
enough anymore for decision-making.
Confronted with huge collections of data, we

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

172

have now created new needs to help us make
better managerial choices. These needs are
automatic summarization of data, extraction of
the “essence” of information stored, and the
discovery of patterns in raw data.

2. C- Mean Algorithm

C 4.5 builds decision trees from a set of training
data in the same way as ID3, using the concept
of information entropy. The training data is a set
S = s1,s2,... of already classified samples. Each
sample si = x1,x2,... is a vector where x1,x2,...
represent attributes or features of the sample.
The training data is augmented with a vector C =
c1,c2,... where c1,c2,... represent the class to
which each sample belongs. C4.5 belongs to a
succession of decision tree learners that trace
their origins back to the work of Hunt and others
in the late 1950s and early 1960s (Hunt 1962).
Its immediate predecessors were ID3 (Quinlan
1979), a simple system consisting initially of
about 600 lines of Pascal, and C4 (Quinlan
1987). C4.5 has grown to about 9,000 lines of C
that is available on diskette with Quinlan (1993).
Input to C4.5 consists of a collection of training
cases, each having a tuple of values for a fixed
set of attributes (or independent variables) A =
fA1; A2; :::; A kg and a class attribute (or
dependent variable). An attribute Aa is described
as continuous or discrete according to whether its
values are numeric or nominal. The class
attribute C is discrete and has values C1; C2; :::;
Cx. The goal is to learn from the training cases a
function DOM(A1) fi DOM(A2) fi ::: fi
DOM(Ak) ! DOM(C) that maps from the
attribute values to a predicted class. The
distinguishing characteristic of learning systems
is the form in which this function is expressed. A
decision tree is depicted as a recursive structure
of a leaf node labelled with a class value, or a
test node that has two or more outcomes, each
linked to a sub tree.

2.1 Implementation of C4.5 Algorithm
on Provided Data

The data obtained from the excel sheet has been
used as a source of data in paper so as to predict
the outcome of the student in the university
exam. However a slight modification has been
done in the same data for a better prediction.

2.2 Building Classification Trees

In the previous section we saw that the
construction of a classification tree starts with
performing good splits on the data. In this
section we define what such a good split is and
how we can find such a split. Three impurity
measures, resubstitution-error, gini-index and the
entropy, for splitting data will be discussed in .
The actual splittingand tree construction
according to these splits.

2.3 Impurity Measures

A split that will separate the data as much as
possible in accordance with the class labels. So
the objective is to obtain nodes that contain cases
of a single class only as mentioned before. We
define impurity as a function of the relative
frequencies of the classes in that node’s(t) =
fi(p1, p2, ..., pJ) (1) with pj (j = 1, ..., J) as the
relative frequencies of the J different classes in
that node To compare all the possible splits of
the data you have, a quality of a split as the
reduction of impurity that the split achieves must
be defined. In the example later on the following
equation for the impurity reduction of split s in
node t will be used: where fi(j) is the proportion
of cases sent to branch j by s, and i(j) is the
impurity of the node of branch j. Because
different algorithms of tree construction use
different impurity measures, we will discuss
three of them and give a general example later on
resubstitution error This is a measure for the
impurity defined by the fraction of the cases in a
node that is classified incorrectly if we assign
every case to the majority class in that node: i(t)
= 1 – max j p(j|t) (3) where p(j|t) is the relative
frequency of class j in node t. The resubstitution
error gives a score to a split according to the
incorrectly classified cases in a node. It can
recognize a better split if it has less error in that
node. But the resubstitution error has one major
disadvantage: it does not recognize a split as a
better one if one of its resulting nodes is pure. So
it does not prefer Split 2 over Split 1 in Figure 2.
In such a case we want a split with a pure node
to be preferred. Gini index The Gini index does
recognize such a split. Its impurity measure is
defined as follows: i(t) =X j p(j|t)(1 − p(j|t)) (4)
Entropy Finally we have the entropy measure
which is used in well-known classification tree
algorithms like ID3 and C4.5. The advantage of

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

173

the entropy measure over the gini-index is that it
will reach minimum faster if more instances of
the child nodes belong to the same class. Splits
to consider we have looked at different impurity
criteria for computing the quality of a split. In
this section we look at which splits are
considered and how we select the best split (for
binary splits only). The attributes can have
numerical or categorical values. In the case of
numerical values, all the values of the attributes
occurring in the training set are considered. The
possible splits are made between two
consecutive numerical values occurring in the
training set. If the attribute is categorical with N
categories, then 2N−1−1 splits are considered.
There are 2N−2 non-empty proper subsets of a
set of N elements. The empty set and the
complete set do not count. Furthermore a split of
the N categories into S and Sc.

2.4 Tree Construction

Building a classification tree starts at the top of
the tree with all the data. For all the attributes the
best split of the data must be computed. Then the
best splits for each of the attributes are
compared. The attribute with the best split wins.
The split will be executed on the attribute with
the best value of the best split (again we consider
binary trees). The data is now separated to the
corresponding branches and from here the
computation on the rest of the nodes will
continue in the same manner. Tree construction
will finish when there is no more data to separate
or no more attributes to separate them by Over
fitting and Pruning.
If possible we continue splitting until all leaf
nodes of the tree contain examples of a single
class. But unless the problem is deterministic,
this will not result in a good tree for prediction.
We call this overfitting. The tree will be focused
too much on the training data. To prevent
overfitting we can use stopping rules; stop
expanding nodes if the impurity reduction of the
best split is below some threshold. A major
disadvantage of stopping rules is that sometimes,
first a weak (not weaker) split is needed to be
able to follow up with a good split. This can be
seen in building a tree for the XOR problem
practDM. Another solution is pruning. First grow
a maximum-size tree on the training sample and
then prune this large tree. The objective is to
select the pruned subtree that has the lowest true
error rate. The problem is, how to find this

pruned subtree .There are two pruning methods
we will use in the tests, cost-complexity pruning
[1] and [5] and reduced-error pruning [3]. In the
next two paragraphs we will explain how the two
pruning methods work and finish with a concrete
example of the pruning process. Cost-complexity
pruning the basic idea of cost-complexity
pruning is not to consider all pruned subtrees,
but only those that are the “best of their kind” in
a sense to be defined below. Let R(T) (T stands
for the complete tree) denote the fraction of
cases in the training sample that is misclassified
by the tree T (R(T) is the weighted summed error
of the leafs of tree T). Total cost Cfi(T) of tree T
is defined as: Cfi(T) = R(T) + fi| ˜ T| (7) The
total cost of tree T then consists of two
components: summed error of the leafs R(T), and
a penalty for the complexity of the tree fi| ˜ T|. In
this expression ˜ T stands for the set of leaf
nodes of T, | ˜ T| the number of leaf nodes and fi
is the parameter that determines the complexity
penalty: when the number of leaf nodes increases
by one (one additional split in a binary tree), then
the total cost (if R remains equal) increases with
fi [5]. The value of fi can make a complex tree
with no errors have a higher total cost than a
small tree making a number of errors. For every
value of fi there is a smallest minimizing subtree.
We state the complete tree by Tmax. For a fixed
value of fi there is a unique smallest minimizing
subtree T(fi) of Tmax.

3. CART algorithm

Classification and Regression Trees is a
classification method which uses historical data
to construct so-called decision trees. Decision
trees are then used to classify new data. In order
to use CART we need to know number of classes
a priori. CART methodology was developed in
80s by Breiman, Freidman, Olshen, Stone in
their paper ”Classification and Regression Trees”
(1984). For building decision trees, CART uses
so-called learning sample - a set of historical
data with pre-assigned classes for all
observations. For example, learning sample for
credit scoring system would be fundamental
information about previous borrows (variables)
matched with actual payoff results (classes).
Decision trees are represented by a set of
questions which splits the learning sample into
smaller and smaller parts. CART asks only
yes/no questions. A possible question could be:
”Is age greater than 50?” or ”Is sex male?”.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

174

CART algorithm will search for all possible
variables and all possible values in order to find
the best split – the question that splits the data
into two parts with maximum homogeneity. The
processes then repeated for each of the resulting
data fragments. Here is an example of simple
classification tree, used by San Diego Medical
Center for classification of their patients to
different levels of risk:

In practice there can be much more complicated
decision trees which can include dozens of levels
and hundreds of variables. As it can be seen from
figure 1.1, CART can easily handle both
numerical and categorical variables. Among
other advantages of CART method is its
robustness to outliers. Usually the splitting
algorithm will isolate outliers in individual node
or nodes. An important practical property of
CART is that the structure of its classification or
regression trees is invariant with respect to
monotone transformations of independent
variables. One can replace any variable with its
logarithm or square root value, the structure of
the tree will not change.
CART methodology consists of tree parts:
1. Construction of maximum tree
2. Choice of the right tree size
3. Classification of new data using constructed
tree
Construction of Maximum Tree
This part is most time consuming. Building the
maximum tree implies splitting the learning
sample up to last observations, i.e. when terminal
nodes contain observations only of one class.
Splitting algorithms are different for

classification and regression trees. Let us first
consider the construction of classification trees.

3.1 Classification Tree

Classification trees are used when for each
observation of learning sample we know the
class in advance. Classes in learning sample may
be provided by user or calculated in accordance
with some exogenous rule. For example, for
stocks trading project, the class can be computed
as a subject to real change of asset price. Let tp
be a parent node and tl,tr - respectively left and
tight child nodes of parent node tp. Consider the
learning sample with variable matrix X with M
number of variables xj and N observations. Let
class vector Y consist of N observations with
total amount of K classes. Classification tree is
built in accordance with splitting rule - the rule
that performs the splitting of learning sample
into smaller parts. We already know that each
time data have to be divided into two parts with
maximum homogeneity:

where tp, tl, tr - parent, left and right nodes; xj -
variable j; xRj best splitting value of variable xj .
Maximum homogeneity of child nodes is defined
by so-called impurity function i(t). Since the
impurity of parent node tp is constant for any of
the possible splits xj fi xRj , j = 1, . . . ,M, the
maximum homogeneity of left and right child
nodes will be equivalent to the maximization of
change of impurity function fii(t): i(t) = i(tp) −
E[i(tc)] where tc - left and right child nodes of
the parent node tp. Assuming that the Pl, Pr -
probabilities of right and left nodes, we get i(t) =

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

175

i(tp) − Pli(tl) − Pri(tr) Therefore, at each node
CART solves the following maximization
problem: arg max xjfixRj, j=1,...,M [i(tp) −
Pli(tl) − Pri(tr)] Equation implies that CART
will search through all possible values of all
variables in matrix X for the best split question
xj < xRj which will maximize the change of
impurity measure fii(t). The next important
question is how to define the impurity function
i(t). In theory there are several impurity
functions, but only two of them are widely used
in practice: Gini splitting rule and Twoing
splitting rule. Gini splitting rule (or Gini index)
is most broadly used rule. It uses the following
impurity function i(t): i(t) =Xk6=l p(k|t)p(l|t)
(2.2) where k, l 1, . . . ,K - index of the class;
p(k|t) - conditional probability of class k
provided we are in node t. Applying the Gini
impurity function 2.2 to maximization problem
2.1 we will get the following change of impurity
measure fii(t): In a classification problem, we
have a training sample of n observations on a
class variable Y that takes values 1, 2, . . . , k, and
p predictor variables, X1, . . . , Xp. Our goal is to
find a model for predicting the values of Y from
new X values. In theory, the solution is simply a
partition of the X space into k disjoint sets, A1,
A2, . . . , Ak, such that the predicted value of Y is
j if X belongs to Aj, for j = 1, 2, . . . , k. If the X
variables take ordered values, two classical
solutions are linear discriminant analysis1 and
nearest neighbor classification.2 These methods
yield sets Aj with piecewise linear and nonlinear,
respectively, boundaries that are not easy to
interpret if p is large. Classification tree methods
yield rectangular sets Aj by recursively
partitioning the data set one X variable at a time.
This makes the sets easier to interpret. For
example, Figure 1 gives an example wherein
there are three classes and two X variables.
The left panel plots the data points and partitions
and the right panel shows the corresponding
decision tree structure. A key advantage of the
tree structure is its applicability to any number of
variables, whereas the plot on its left is limited to
at most two. The first published classification
tree algorithm is THAID.3,4 Employing a
measure of node impurity based on the
distribution of the observed Y values in the node,
THAID splits a node by exhaustively searching
X takes ordered values, the set S is an interval of
the form (−∞, c]. Otherwise, S is a subset of the
values taken by X. The process is applied
recursively on the data in each child node.
Splitting stops if the relative decrease in impurity

is below a prespecified threshold. Algorithm 1
gives the pseudo code for the basic steps.

Algorithm 1

 Pseudo code for tree construction by exhaustive
search
1. Start at the root node.
2. For each X, find the set S that minimizes the
sum of the node impurities in the two child nodes
and choose the split { X∗ ∈ S∗} that gives the
minimum overall X and S.
3. If a stopping criterion is reached, exit.
Otherwise, apply step 2 to each child node in
Turn.
C4.55 and CART6 are two later classification
tree algorithms that follow this approach. C4.5
uses entropy for its impurity function, whereas
CART uses a generalization of the binomial
variance called the Gini index. Unlike THAID,
however, they first grow an overly large tree and
then prune it to a smaller size to minimize an
estimate of the misclassification error. CART
employs 10-fold (default) cross validation,
whereas C4.5 uses a heuristic formula to
estimate error rates. CART is implemented in the
R system7 as RPART,8 which we use in the
examples below.
Despite its simplicity and elegance, the
exhaustive search approach has an undesirable
property. Note that an ordered variable with m
distinct values has (m− 1) splits of the form X ≤
c.

4. Proposed Work

In the current Industry of the data mining, the
efficiency to increase the identification area has
been a major task which has been getting
implemented using different types of algorithm.
According to the law of cycle, hundred percent
efficiency is not possible but still the researchers
have been trying to take maximum out of it.
Different scientist has implemented their
different types of parameters and criteria to
figure out how effective the classification could
be. Few names has left their mark in such kind of
work with their popular proposed algorithms like
CART, SVM C MEAN and many more. Our aim
is to find a hybrid algorithm which can
implement better result than the proposed
algorithms till now. For this aim, we are going to
combine two most effective results like CART

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

176

AND CMEAN to implement a sophisticated
architecture which has both the features like tree
architecture and a mean square average
algorithm. By combining two algorithms we
would be definitely be able to use both the
features and the results would be definitely
better.

5. Conclusions

This paper concludes that the accuracy of
classifying data can be improved by hybrid the
feature of C mean and CART algorithm and their
implementation on the MATLAB shows their
resuls improvement in terms of accuracy
compared to existing classifying algorithm

References
[1] Al-Kilidar, H., Cox, K., Kitchenham, B.: The

Use and Usefulness of the ISO/IEC 9126
Quality Standard. International Symposium
on Empirical Software Engineering, 7 p.
(2005) .

[2] Boehm, B. W., Brown, J. R., Kaspar, H.,
Lipow, M., McLeod, G., Merritt, M.:
Characteristics of Software Quality. North
Holland (1978) .

[3] Bøegh, J.: A New Standard for Quality
Requirements. IEEE Software 25(2), 57--63
(2008) .

[4] Dromey, R.G.: Concerning the Chimera.
IEEE Software 13 (1), pp. 33--43 (1996).

[5] ISO, International Organization for
Standardization: ISO 9126-1:2001, Software
Engineering – Product Quality, Part 1:
Quality model (2001) .

[6] Lindland, O.I., Sindre, G., Solvberg, A.:
Understanding Quality in Conceptual
Modeling. IEEE Software 11(2), pp. 42--49
(1994) .

[7] McCall, J. A., Richards, P. K., Walters, G. F.:
Factors in Software Quality. Nat'l Tech.
Information Service, Vol. 1, 2 and 3 (1977).

[8] Mohagheghi, P., Aagedal, J.Ø.: Evaluating
Quality in Model-Driven Engineering. In:
Workshop on Modeling in Software
Engineering (MISE’07), In: Proc. of
ICSE’07, 6. p (2007) .

[9] Wagner, S., Deissenboeck, F.: An Integrated
Approach to Quality Modeling. Fifth
International Workshop on Software Quality,
In: Proc. of ICSE’07, 6 p. (2007).

[10] Joc Sanders and Eugene Curran.
Software Quality, a Framework for success
in software Development and Support.
Addison - Wesley Publishing Company,
1995.

[11] Safa, L. The practice of deploying
DSM, report from a Japanese appliance
maker trenches. In Proceedings of the 6th
OOPSLA Workshop on Domain Specific
Modeling (DSM’06), 2006, 12p.

