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Abstract 
Data Mining is a field of search and researches of 
data. Mining the data means fetching out a piece of 
data from a huge data block. The basic work in the 
data mining can be categorized in two subsequent 
ways. One is called classification and the other is 
called clustering. Although both refers to some kind of 
same region but still there are differences in both the 
terms. The classification of the data is only possible if 
you have modified and identified the clusters. In the 
presented research paper, our aim is to find out the 
maximum number of clusters in a specified region by 
applying the area searching algorithms. Classification 
is always based on two things. a)The area which you 
choose for the classification that is the cluster region 
.b)The kind of dataset which you are going to apply on 
the selected region .To increase the accuracy of the 
searching technique, any one would need to focus on 
two things . a)Whether the data set has been cauterized 
in proper manner or not .b)If the clusters are defined , 
whether they fit into the appropriate classified area or 
not . 
Keywords: Data Mining, C-mean, CART, KDD, 
SVM-Algorithm. 

1. Introduction 

With the enormous amount of data stored in 
files, databases, and other repositories, it is 
increasingly important, if not necessary, to 
develop powerful means for analysis and perhaps 
interpretation of such data and for the extraction 
of interesting knowledge that could help in 
decision-making. Data Mining, also popularly 
known as Knowledge Discovery in Databases 
(KDD), refers to the nontrivial extraction of 
implicit, previously unknown and potentially 
useful information from data in databases. Data 
mining refers to extracting or “mining” 
knowledge from large amounts of data.  

 
 
Classification (technique to analyses the frequent 
item sets) is one of the major fields in the area of 
extracting knowledge from vast data. A frequent 
item set typically refers to a set of items that 
frequently appear together in a transactional data 
set, such as milk and bread (Han & Kamber, 
2001). In this chapter, we will briefly review 
about data mining, its architecture, 
functionalities, classification, methods of 
classification etc. We are in an age often referred 
to as the information age. In this information 
age; because we believe that information leads to 
power and success, and thanks to sophisticated 
technologies such as computers, satellites, etc., 
we have been collecting tremendous amounts of 
information. Initially, with the advent of 
computers and means for mass digital storage, 
we started collecting and storing all sorts of data, 
counting on the power of computers to help sort 
through this amalgam of information. 
Unfortunately, these massive collections of data 
stored on disparate structures very rapidly 
became overwhelming. This initial chaos has led 
to the creation of structured databases and 
database management systems (DBMS). The 
efficient database management systems have 
been very important assets for management of a 
large corpus of data and especially for effective 
and efficient retrieval of particular information 
from a large collection whenever needed. The 
proliferation of database management systems 
has also contributed to recent massive gathering 
of all sorts of information. Today, we have far 
more information than we can handle: from 
business transactions and scientific data, to 
satellite pictures, text reports and military 
intelligence. Information retrieval is simply not 
enough anymore for decision-making. 
Confronted with huge collections of data, we 



IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012 
ISSN (Online):  2231 –5268                                   
www.ijcsms.com 
 

IJCSMS 
www.ijcsms.com 

172 
 

have now created new needs to help us make 
better managerial choices. These needs are 
automatic summarization of data, extraction of 
the “essence” of information stored, and the 
discovery of patterns in raw data. 
 

2. C- Mean Algorithm  
 
C 4.5 builds decision trees from a set of training 
data in the same way as ID3, using the concept 
of information entropy. The training data is a set 
S = s1,s2,... of already classified samples. Each 
sample si = x1,x2,... is a vector where x1,x2,... 
represent attributes or features of the sample. 
The training data is augmented with a vector C = 
c1,c2,... where c1,c2,... represent the class to 
which each sample belongs. C4.5 belongs to a 
succession of decision tree learners that trace 
their origins back to the work of Hunt and others 
in the late 1950s and early 1960s (Hunt 1962). 
Its immediate predecessors were ID3 (Quinlan 
1979), a simple system consisting initially of 
about 600 lines of Pascal, and C4 (Quinlan 
1987). C4.5 has grown to about 9,000 lines of C 
that is available on diskette with Quinlan (1993). 
Input to C4.5 consists of a collection of training 
cases, each having a tuple of values for a fixed 
set of attributes (or independent variables) A = 
fA1; A2; :::; A kg and a class attribute (or 
dependent variable). An attribute Aa is described 
as continuous or discrete according to whether its 
values are numeric or nominal. The class 
attribute C is discrete and has values C1; C2; :::; 
Cx. The goal is to learn from the training cases a 
function DOM(A1) fi DOM(A2) fi ::: fi 
DOM(Ak) ! DOM(C) that maps from the 
attribute values to a predicted class. The 
distinguishing characteristic of learning systems 
is the form in which this function is expressed. A 
decision tree is depicted as a recursive structure 
of a leaf node labelled with a class value, or a 
test node that has two or more outcomes, each 
linked to a sub tree. 
 
2.1 Implementation of C4.5 Algorithm 
on Provided Data 
 
The data obtained from the excel sheet has been 
used as a source of data in paper  so as to predict 
the outcome of the student in the university 
exam. However a slight modification has been 
done in the same data for a better prediction. 

 

 
2.2 Building Classification Trees 
 
In the previous section we saw that the 
construction of a classification tree starts with 
performing good splits on the data. In this 
section we define what such a good split is and 
how we can find such a split. Three impurity 
measures, resubstitution-error, gini-index and the 
entropy, for splitting data will be discussed in . 
The actual splittingand tree construction 
according to these splits. 
 
2.3 Impurity Measures 
 
A split that will separate the data as much as 
possible in accordance with the class labels. So 
the objective is to obtain nodes that contain cases 
of a single class only as mentioned before. We 
define impurity as a function of the relative 
frequencies of the classes in that node’s(t) = 
fi(p1, p2, ..., pJ ) (1) with pj (j = 1, ..., J) as the 
relative frequencies of the J different classes in 
that node To compare all the possible splits of 
the data you have, a quality of a split as the 
reduction of impurity that the split achieves must 
be defined. In the example later on the following 
equation for the impurity reduction of split s in 
node t will be used: where fi(j) is the proportion 
of cases sent to branch j by s, and i(j) is the 
impurity of the node of branch j. Because 
different algorithms of tree construction use 
different impurity measures, we will discuss 
three of them and give a general example later on 
resubstitution error This is a measure for the 
impurity defined by the fraction of the cases in a 
node that is classified incorrectly if we assign 
every case to the majority class in that node: i(t) 
= 1 – max j p(j|t) (3) where p(j|t) is the relative 
frequency of class j in node t. The resubstitution 
error gives a score to a split according to the 
incorrectly classified cases in a node. It can 
recognize a better split if it has less error in that 
node. But the resubstitution error has one major 
disadvantage: it does not recognize a split as a 
better one if one of its resulting nodes is pure. So 
it does not prefer Split 2 over Split 1 in Figure 2. 
In such a case we want a split with a pure node 
to be preferred. Gini index The Gini index does 
recognize such a split. Its impurity measure is 
defined as follows: i(t) =X j p(j|t)(1 − p(j|t)) (4) 
Entropy Finally we have the entropy measure 
which is used in well-known classification tree 
algorithms like ID3 and C4.5. The advantage of 
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the entropy measure over the gini-index is that it 
will reach minimum faster if more instances of 
the child nodes belong to the same class. Splits 
to consider we have looked at different impurity 
criteria for computing the quality of a split. In 
this section we look at which splits are 
considered and how we select the best split (for 
binary splits only). The attributes can have 
numerical or categorical values. In the case of 
numerical values, all the values of the attributes 
occurring in the training set are considered. The 
possible splits are made between two 
consecutive numerical values occurring in the 
training set. If the attribute is categorical with N 
categories, then 2N−1−1 splits are considered. 
There are 2N−2 non-empty proper subsets of a 
set of N elements. The empty set and the 
complete set do not count. Furthermore a split of 
the N categories into S and Sc. 
 
2.4 Tree Construction 
 
Building a classification tree starts at the top of 
the tree with all the data. For all the attributes the 
best split of the data must be computed. Then the 
best splits for each of the attributes are 
compared. The attribute with the best split wins. 
The split will be executed on the attribute with 
the best value of the best split (again we consider 
binary trees). The data is now separated to the 
corresponding branches and from here the 
computation on the rest of the nodes will 
continue in the same manner. Tree construction 
will finish when there is no more data to separate 
or no more attributes to separate them by Over 
fitting and Pruning. 
If possible we continue splitting until all leaf 
nodes of the tree contain examples of a single 
class. But unless the problem is deterministic, 
this will not result in a good tree for prediction. 
We call this overfitting. The tree will be focused 
too much on the training data. To prevent 
overfitting we can use stopping rules; stop 
expanding nodes if the impurity reduction of the 
best split is below some threshold. A major 
disadvantage of stopping rules is that sometimes, 
first a weak (not weaker) split is needed to be 
able to follow up with a good split. This can be 
seen in building a tree for the XOR problem 
practDM. Another solution is pruning. First grow 
a maximum-size tree on the training sample and 
then prune this large tree. The objective is to 
select the pruned subtree that has the lowest true 
error rate. The problem is, how to find this 

pruned subtree .There are two pruning methods 
we will use in the tests, cost-complexity pruning 
[1] and [5] and reduced-error pruning [3]. In the 
next two paragraphs we will explain how the two 
pruning methods work and finish with a concrete 
example of the pruning process. Cost-complexity 
pruning the basic idea of cost-complexity 
pruning is not to consider all pruned subtrees, 
but only those that are the “best of their kind” in 
a sense to be defined below. Let R(T) (T stands 
for the complete tree) denote the fraction of 
cases in the training sample that is misclassified 
by the tree T (R(T) is the weighted summed error 
of the leafs of tree T). Total cost Cfi(T) of tree T 
is defined as: Cfi(T) = R(T) + fi| ˜ T| (7) The 
total cost of tree T then consists of two 
components: summed error of the leafs R(T), and 
a penalty for the complexity of the tree fi| ˜ T|. In 
this expression ˜ T stands for the set of leaf 
nodes of T, | ˜ T| the number of leaf nodes and fi 
is the parameter that determines the complexity 
penalty: when the number of leaf nodes increases 
by one (one additional split in a binary tree), then 
the total cost (if R remains equal) increases with 
fi [5]. The value of fi can make a complex tree 
with no errors have a higher total cost than a 
small tree making a number of errors. For every 
value of fi there is a smallest minimizing subtree. 
We state the complete tree by Tmax. For a fixed 
value of fi there is a unique smallest minimizing 
subtree T(fi) of Tmax. 
 

3. CART algorithm 
 
Classification and Regression Trees is a 
classification method which uses historical data 
to construct so-called decision trees. Decision 
trees are then used to classify new data. In order 
to use CART we need to know number of classes 
a priori. CART methodology was developed in 
80s by Breiman, Freidman, Olshen, Stone in 
their paper ”Classification and Regression Trees” 
(1984). For building decision trees, CART uses 
so-called learning sample - a set of historical 
data with pre-assigned classes for all 
observations. For example, learning sample for 
credit scoring system would be fundamental 
information about previous borrows (variables) 
matched with actual payoff results (classes). 
Decision trees are represented by a set of 
questions which splits the learning sample into 
smaller and smaller parts. CART asks only 
yes/no questions. A possible question could be: 
”Is age greater than 50?” or ”Is sex male?”. 
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CART algorithm will search for all possible 
variables and all possible values in order to find 
the best split – the question that splits the data 
into two parts with maximum homogeneity. The 
processes then repeated for each of the resulting 
data fragments. Here is an example of simple 
classification tree, used by San Diego Medical 
Center for classification of their patients to 
different levels of risk: 
 

 
 
 
In practice there can be much more complicated 
decision trees which can include dozens of levels 
and hundreds of variables. As it can be seen from 
figure 1.1, CART can easily handle both 
numerical and categorical variables. Among 
other advantages of CART method is its 
robustness to outliers. Usually the splitting 
algorithm will isolate outliers in individual node 
or nodes. An important practical property of 
CART is that the structure of its classification or 
regression trees is invariant with respect to 
monotone transformations of independent 
variables. One can replace any variable with its 
logarithm or square root value, the structure of 
the tree will not change. 
CART methodology consists of tree parts: 
1. Construction of maximum tree 
2. Choice of the right tree size 
3. Classification of new data using constructed 
tree 
Construction of Maximum Tree 
This part is most time consuming. Building the 
maximum tree implies splitting the learning 
sample up to last observations, i.e. when terminal 
nodes contain observations only of one class. 
Splitting algorithms are different for 

classification and regression trees. Let us first 
consider the construction of classification trees. 
 
 
3.1 Classification Tree 
 
Classification trees are used when for each 
observation of learning sample we know the 
class in advance. Classes in learning sample may 
be provided by user or calculated in accordance 
with some exogenous rule. For example, for 
stocks trading project, the class can be computed 
as a subject to real change of asset price. Let tp 
be a parent node and tl,tr - respectively left and 
tight child nodes of parent node tp. Consider the 
learning sample with variable matrix X with M 
number of variables xj and N observations. Let 
class vector Y consist of N observations with 
total amount of K classes. Classification tree is 
built in accordance with splitting rule - the rule 
that performs the splitting of learning sample 
into smaller parts. We already know that each 
time data have to be divided into two parts with 
maximum homogeneity: 
 

 
 
where tp, tl, tr - parent, left and right nodes; xj - 
variable j; xRj best splitting value of variable xj . 
Maximum homogeneity of child nodes is defined 
by so-called impurity function i(t). Since the 
impurity of parent node tp is constant for any of 
the possible splits xj fi xRj , j = 1, . . . ,M, the 
maximum homogeneity of left and right child 
nodes will be equivalent to the maximization of 
change of impurity function fii(t): i(t) = i(tp) − 
E[i(tc)] where tc - left and right child nodes of 
the parent node tp. Assuming that the Pl, Pr - 
probabilities of right and left nodes, we get i(t) = 
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i(tp) − Pli(tl) − Pri(tr) Therefore, at each node 
CART solves the following maximization 
problem: arg max xjfixRj, j=1,...,M [i(tp) − 
Pli(tl) − Pri(tr)] Equation  implies that CART 
will search through all possible values of all 
variables in matrix X for the best split question 
xj < xRj which will maximize the change of 
impurity measure fii(t). The next important 
question is how to define the impurity function 
i(t). In theory there are several impurity 
functions, but only two of them are widely used 
in practice: Gini splitting rule and Twoing 
splitting rule. Gini splitting rule (or Gini index) 
is most broadly used rule. It uses the following 
impurity function i(t): i(t) =Xk6=l p(k|t)p(l|t) 
(2.2) where k, l 1, . . . ,K - index of the class; 
p(k|t) - conditional probability of class k 
provided we are in node t. Applying the Gini 
impurity function 2.2 to maximization problem 
2.1 we will get the following change of impurity 
measure fii(t): In a classification problem, we 
have a training sample of n observations on a 
class variable Y that takes values 1, 2, . . . , k, and 
p predictor variables, X1, . . . , Xp. Our goal is to 
find a model for predicting the values of Y from 
new X values. In theory, the solution is simply a 
partition of the X space into k disjoint sets, A1, 
A2, . . . , Ak, such that the predicted value of Y is 
j if X belongs to Aj, for j = 1, 2, . . . , k. If the X 
variables take ordered values, two classical 
solutions are linear discriminant analysis1 and 
nearest neighbor classification.2 These methods 
yield sets Aj with piecewise linear and nonlinear, 
respectively, boundaries that are not easy to 
interpret if p is large. Classification tree methods 
yield rectangular sets Aj by recursively 
partitioning the data set one X variable at a time. 
This makes the sets easier to interpret. For 
example, Figure 1 gives an example wherein 
there are three classes and two X variables. 
The left panel plots the data points and partitions 
and the right panel shows the corresponding 
decision tree structure. A key advantage of the 
tree structure is its applicability to any number of 
variables, whereas the plot on its left is limited to 
at most two. The first published classification 
tree algorithm is THAID.3,4 Employing a 
measure of node impurity based on the 
distribution of the observed Y values in the node, 
THAID splits a node by exhaustively searching 
X takes ordered values, the set S is an interval of 
the form (−∞, c]. Otherwise, S is a subset of the 
values taken by X. The process is applied 
recursively on the data in each child node. 
Splitting stops if the relative decrease in impurity 

is below a prespecified threshold. Algorithm 1 
gives the pseudo code for the basic steps. 
 
 
 
Algorithm 1 
 
 Pseudo code for tree construction by exhaustive 
search 
1. Start at the root node. 
2. For each X, find the set S that minimizes the 
sum of the node impurities in the two child nodes 
and choose the split { X∗ ∈ S∗} that gives the 
minimum overall X and S. 
3. If a stopping criterion is reached, exit. 
Otherwise, apply step 2 to each child node in 
Turn. 
C4.55 and CART6 are two later classification 
tree algorithms that follow this approach. C4.5 
uses entropy for its impurity function, whereas 
CART uses a generalization of the binomial 
variance called the Gini index. Unlike THAID, 
however, they first grow an overly large tree and 
then prune it to a smaller size to minimize an 
estimate of the misclassification error. CART 
employs 10-fold (default) cross validation, 
whereas C4.5 uses a heuristic formula to 
estimate error rates. CART is implemented in the 
R system7 as RPART,8 which we use in the 
examples below. 
Despite its simplicity and elegance, the 
exhaustive search approach has an undesirable 
property. Note that an ordered variable with m 
distinct values has (m− 1) splits of the form X ≤ 
c. 

4. Proposed Work 

In the current Industry of the data mining, the 
efficiency to increase the identification area has 
been a major task which has been getting 
implemented using different types of algorithm. 
According to the law of cycle, hundred percent 
efficiency is not possible but still the researchers 
have been trying to take maximum out of it. 
Different scientist has implemented their 
different types of parameters and criteria to 
figure out how effective the classification could 
be. Few names has left their mark in such kind of 
work with their popular proposed algorithms like 
CART, SVM C MEAN and many more. Our aim 
is to find a hybrid algorithm which can 
implement better result than the proposed 
algorithms till now. For this aim, we are going to 
combine two most effective results like CART 
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AND CMEAN to implement a sophisticated 
architecture which has both the features like tree 
architecture and a mean square average 
algorithm. By combining two algorithms we 
would be definitely be able to use both the 
features and the results would be definitely 
better.  
 
5. Conclusions 
 
This paper concludes that the accuracy of 
classifying data can be improved by hybrid the 
feature of C mean and CART algorithm and their 
implementation on the MATLAB shows their 
resuls improvement in terms of accuracy 
compared to existing classifying algorithm 
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