
IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

226

Implementation of Selenium with JUNIT and Test-Ng

Deepti Gaur1, Dr. Rajender Singh Chhillar2

1M.tech Student, Department Of Computer Science and Application,

M.D University, Rohtak-124001, Haryana, India
deeptigaur50@gmail.com

2Professor, Department Of Computer Science and Application,
M.D University, Rohtak-124001, Haryana, India

Chhillar02@gmail.com

Abstract
Software testing is complex and time consuming.
One way to reduce the effort associated with testing
is to generate test data automatically. Testing is very
important part of software development. Quality is
not an absolute term; it is value to some person. With
that in mind, testing can never completely establish
the correctness of arbitrary computer software testing
furnishes a criticism or comparison that compares the
state and behavior of the product against a
specification. Software testing process can produce
several artifacts. So, we proposed a model to improve
quality and correctness and also we reduce the
software testing time. In this paper we will
implement selenium with different frameworks i.e.
junit and testng.
Keyword:-Selenium, SeleniumRC, Junit, TestNG.

Introduction

 "Software testing is technique of evaluating the
attributes (i.e. correctness, completeness, security,
consistency, unambiguousness, quality etc.) of
software and determining that whether it meets its
required functionality or not". Purpose of testing is to
find out Defects and causes and fixed them as early
as possible. Testing simply refers to the validation
and verification specially to build good quality
software. There is some basic terms used in software
testing that are as follows :-

Verification

 Are we building the product right? It refers to the
correctness of the function specifications.

Validation

 Are we building the right product? It refers to the
user expectation whether the product developed
meets the user requirement or not.
Testing is an activity to find the bugs in software that
may perform by tester or by applying strategies like
white box or black box. So, the activities involved in
the testing should be in planned way.

Black –box

This testing methodology looks at what are the
available inputs for an application and what he
expected outputs are that should result from each
input.

White-box

This testing methodology looks under the covers and
into the subsystem of an application. Whereas black-
box testing concerns itself exclusively with the inputs
and outputs of an application, white-box testing
enables you to see what is happening inside the
application.
Software testing is focused on finding defects in the
final software before give it to the user. So it is the
responsibility of the developer and the tester that
he/she will examine all core functionality and the
components associated with the software.

Selenium

Selenium IDE is the only flavor of Selenium which
allows you to record user action on browser window.
It can also record user actions in most of the popular
languages like Java, C#, Perl, Ruby etc. This

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

227

eliminates the need of learning new vendor scripting
language. For executing scripts created in these
languages, you will need to use Selenium Remote
Control. If you do not want to use Remote Control
than you will need to create your test scripts in
HTML format. Selenium can be accessed from tool--
> Selenium IDE in your browser toolbar if the
installation is completed successfully. As compared
to most of the test automation tools it is very simple
and lightweight. The small red button on the right
hand side gives you an indication on whether
Selenium is in recording mode or not. Also, Selenium
IDE will not record any operation that you do on
your computer apart from the events on Firefox
browser window. So go ahead read your mail, open a
word doc or do anything else, Selenium will record
only your actions on browser. Other options present
on the Selenium IDE toolbar are related to test
execution. Run will execute the tests with the
maximum possible speed, Walk will execute them
with relatively slow speed and in step mode you will
need to tell Selenium to take small steps. Final button
present on the Selenium IDE toolbar is the Selenium
Test Runner. Test Runner gives you nice browser
interface to execute your tests and also gives
summary of how many tests were executed, how
many passed and failed. It also gives similar
information on commands which were passed or
failed. Test Runner is also available to tests
developed in HTML Only. If you open the option
window by going to Option, you will see there are
some self explanatory options available. For
example, encoding of test files, timeout etc. It allows
us to:

 • Record user actions when browsing in Firefox
 • Replay recorded scripts
 • Convert recorded scripts into programming

languages such as Java, Ruby, and more
 • Add verification and synchronization steps to the

script during the recording process The IDE
provides excellent support for writing automated
test scripts in Selenium and gets better with every
release.

Selenium RC:-

Selenium Remote Control is the server version of
Selenium. You write your tests using a programming
language and client library. Your tests issue
commands which the client library sends to the
server. The server then 'runs' your actions for you in
the browser and reports the results back to your
client. Using Selenium-RC allows you to write
automated tests in any supported programming
language. Tests written in this way allow you to use

standard programming practices to make them easy
to maintain, robust and easy to collaborate on as a
team.
Selenium RC allows the test automation expert to use
a programming language for maximum flexibility
and extensibility in developing test logic. For
example, if the application under test returns a result
set and the automated test program needs to run tests
on each element in the result set, the iteration / loop
support of programming language’s can be used to
iterate through the result set, calling Selenium
commands to run tests on each item.
Selenium RC provides an API and library for each of
its supported languages. This ability to use Selenium
RC with a high level programming language to
develop test cases also allows the automated testing
to be integrated with the project’s automated build
environment.
Automated Integration Testing with Selenium
applications:
Automated integration tests can be useful particularly
for the following types .
* Existing applications that haven’t run any unit tests
(e.g., legacy applications)
* CRUD applications that have a very simple middle
tier and therefore don’t have/require unit tests
* Applications that have business logic tightly
coupled to the environment in which they run (e.g.,
business logic embedded in DAOs or servlets)
Options for implementing automated integration
tests:
* Use a different framework for each tier
* Use tools, such as Watir or Watij
To create and run integration tests with Selenium,
you must complete the following steps:
1. Use the Selenium IDE to record and play tests.
2. Export tests created with the Selenium IDE as
JUnit tests.
3. Add the JUnit tests to your Java project in your
IDE and run the tests.

Implementation and Result

JUNIT with Selenium

Import selenium-java-client-driver-0.9.2.jar and
seleniumserver-coreless-1.0-0081010.060147.jar into
your IDE (Eclipse, NetBeans, IntelliJ, etc.) project.
The destroy method will stop the Selenium server.
Start the application server with the application that
you are trying to test and then run the JUnit4 tests.
The JUnit4 init and destroy methods will be called
once only for each run and they will start the
Selenium server. Lastly, the JUnit4 test cases will be

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

228

run. V. Implementation The implementation of the
system is described in the following steps
• Take a URL
• Record the Web Application
• Test the Navigations and hyperlinks
• Obtain the Results

 Test Cases

A good test case is one that has high probability of
finding an undiscovered error. A successful test is
one that uncovers an undiscovered error. Test Cases
in Selenium are nothing but recording the Web
Application and testing that again using the Selenium
tool. The IDE allows many options for running your
test case. You can run a test case all at once, stop and
start it, run it one line at a time, run a single
command you are currently developing, and you can
do a batch run of an entire test suite. Execution of test
case is very flexible in the IDE.
To Run a Test Case
• Click the Run button to run the currently displayed

test case.
• Run a Test Suite
• Click the Run All button to run all the test cases in

the currently loaded test suite.
• Stop and Start
 The Pause button can be used to stop the test case

while it is running. The icon of this button then
changes to indicate the Resume button. To
continue click Resume.

• Stop in the Middle
You can set a breakpoint in the test case to cause it
to stop on a particular command. This is useful for
debugging your test case. To set a breakpoint, select
a command, right-click, and from the context menu
select Toggle Breakpoint.

• Start from the Middle
You can tell the IDE to begin running from a
specific command in the middle of the test case.
This also is used for debugging. To set a start point,
select a command, rightclick, and from the context
menu select Set/Clear Start Point.

• Run Any Single Command
Double-click any single command to run it by itself.
This is useful when writing a single command. It
lets you immediately test a command you are
constructing, when you are not sure if it is correct.
You can double-click it to see if it runs correctly

TestNG – Test Automation with Selenium

TestNG framework can be used for automation
testing with Selenium (web application automation
testing tool). .
package com.selftechy.testng;

import com.thoughtworks.selenium.*;
import org.testng.annotations.*;

public class TestNGDemo extends
SeleneseTestBase{
 public Selenium selenium;

 @BeforeMethod
 public void setUp()throws Exception{
 selenium = new
DefaultSelenium("localhost",4444,"*chrome","http://
selftechy.com");
 selenium.start();
 selenium.windowMaximize();
 }

 @Test
 public void testNGDemo() throws
Exception {
 selenium.open("/");
 selenium.click("link=TestNG
(Next Generation Testing Framework) –
Understanding Annotations");
 Thread.sleep(10000);

 verifyTrue(selenium.isTextPresent("Anno
tation:"));

 selenium.click("link=Selenium");
 Thread.sleep(10000);

 selenium.click("css=a[title=\"Introduction
to Selenium\"]");
 Thread.sleep(10000);
 }

 @Test
 public void testTestAbout() throws
Exception {
 selenium.open("/");
 selenium.click("link=About");

 selenium.waitForPageToLoad("30000");

 verifyTrue(selenium.isTextPresent("Selen
ium, QTP, Java"));
 selenium.click("link=Home");

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

229

 selenium.waitForPageToLoad("30000");
 selenium.click("link=TestNG
– Next Generation Testing Framework");

 selenium.waitForPageToLoad("30000");

 verifyTrue(selenium.isTextPresent("Need
for a Testing Framework:"));
 }

 @AfterMethod
 public void tearDown(){
 selenium.stop();

 }

}

The Java class “TestNGDemo” is implemented in
Eclipse IDE using TestNG framework.

In the above code, there are two test methods, which
are marked with @Test annotation. There are two
other methods, “setUp” and “tearDown” which are
marked with @BeforeMethod and @AfterMethod
annotations. Hence Before executing each test, setUp
method will be executed. After the execution of each
test, tearDown gets executed. Hence, Selenium gets
instantiated and browser gets opened and closed
twice during the execution.

How to execute the test?

Click Run –> Run As –> TestNG Test

Output of the execution should be as below

[TestNG] Running:
 C:\Documents and Settings\deepti\Local
Settings\Temp\testng-eclipse-1339593504\testng-
customsuite.xml

PASSED: testNGDemo
PASSED: testTestAbout

======================================
=========
 Default test
 Tests run: 2, Failures: 0, Skips: 0
==
=====

==
=====
Default suite
Total tests run: 2, Failures: 0, Skips: 0
======================================
=========

[TestNG] Time taken by
org.testng.reporters.EmailableReporter@1a679b7: 15
ms
[TestNG] Time taken by
org.testng.reporters.SuiteHTMLReporter@1e51060:
16 ms
[TestNG] Time taken by
org.testng.reporters.JUnitReportReporter@337d0f: 0
ms
[TestNG] Time taken by
org.testng.reporters.XMLReporter@e102dc: 0 ms
[TestNG] Time taken by [TestListenerAdapter]
Passed:0 Failed:0 Skipped:0]: 0 ms

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

230

Test execution also creates set of XML & HTML
reports. TestNG creates “test-output” folder in the
root folder, inside which we can see the reports.
Below are the screenshots of some of the reports
created by TestNG.

Report 1 created by TestNG

Report 2 created by TestNG

Conclusion

JUnit 4 and TestNG are both very popular unit test
framework in Java. Both frameworks look very
similar in functionality.

Feature comparison between JUnit 4 and TestNG.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

231

Annotation Support

The annotation supports are implemented in both JUnit 4 and TestNG look similar.

Feature JUnit 4 TestNG
test annotation @Test @Test

run before all tests
in this suite have

run

– @BeforeSuite

run after all tests
in this suite have

run

– @AfterSuite

run before the test – @BeforeTest
run after the test – @AfterTest

run before the first
test method that
belongs to any of
these groups is

invoked

– @BeforeGroups

run after the last
test method that
belongs to any of
these groups is

invoked

– @AfterGroups

run before the first
test method in the

current class is
invoked

@BeforeClass @BeforeClass

run after all the
test methods in the
current class have

been run

@AfterClass @AfterClass

run before each
test method

@Before @BeforeMethod

run after each test
method

@After @AfterMethod

ignore test @ignore @Test(enbale=false)

expected
exception

@Test(expected =
ArithmeticExcepti

on.class)

@Test(expectedExceptions =
ArithmeticException.class)

Timeout @Test(timeout =
1000)

@Test
(timeout = 1000)

References

[1] Glenford J. Myers "The Art of Software Testing,
Second Edition" published in 2004. Antonia
Bertoline" SOFTWARE TESTING" published in
IEEE-Trial (Version 0.95) – May 2001.

[2] R. Boddu, G. Lan, G. Mukhopadhyay, B. Cukie,
"RETNA" from requirements to testing in a natural
way," 12th IEEE

[3] International Requirements Engineering Conference,
pp.262-271, 2004.

[4] Beck, K. (2003). Test Driven Development – by
Example Boston, Addison Wesley.

[5] E. van Veendaal (2008), Test Improvement
Manifesto, in: Testing Experience, Issue 04/08,
December 2008.

[6] X. Qu. M.B. Cohen and G. Rothermel. Configuration
ware regression testing : an empirical study of

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

232

sampling and prioritization. In ISSTA '08. 2008.
[7] R. Lutz, I.C. Milkulski, "Requirements discovery

during the testing of safety - critical software,"
Software Engineering 25th IEEE International
Conference, pp. 578-583, 2003.

[8] Wagner, S. & Seifert, T. 2005, Software Quality
Economics for Defect Detection Techniques Using
Failure Prediction. In Processings of the 3rd
Workshop on Software Quality (3-WoSQ). ACM
Press.

[9] S. Berner, R. Weber, R.K. Keller, "Requirements &
testing : Observations and lesson learned from
automated testing," Proceedings of 27th international
conference on software Engineering, pp. 571-579,
2005.

[10] Boehm, B., Huang, L., Jain, A. & Madachy, R. 2004.
The ROI of Software Dependability : The iDAVE
Model, IEEE Software, 21(3).

[11] K.R. Walcott, M.L. Soffa, Gregory M. Kafhammer
and Robert S. Roos. Time-aware test suite
prioritization. In Proceedings of the 2006
International Symposium on Software testing and
Analysis, page 1-12, July 2006.

[12] Peter Sestoft "Systematic software testing" published
in IT University of Copenhagen, Denmark Version 2,
2008-02-25.

[13] D. Jeffrey and N. Gupta. Test Care Prioritization
Using Relevant Slices. In proceedings of Computer
Software and Application COMPSA'06, Chicago,
USA, Pages 411-420, 2006. K. Yukse, S. Dupont, D.
Harnoir and C. Froidure, "FTTx automated test
solution : Requirements and experimental
implementation," IEE Magazine Electronics Letter,
Vol. 41, No. 9, pp. 546-547, 2005.

[14] Williams, L., E.M. Maximilien, et. al. (2003). Test
Driver Development as a Defect-Reduction Practice.
IEEE International Symposium on Software
Reliability Engineering, Denver, CO, IEEE
Computer Society.

[15] M.B. Cohen, J. Snyder, and G. Rothermel. Testing
across configurations : implications for combinatorial
testing. SIGSOFT Softw. Eng. Notes, 31(6)1-9, 2006.

[16] Herzlich, P. 2005. The Need for Software Testing.
Ovum Research : London UK.

[17] Gregory M. Kapfhammer "Software Testing" ACM
2008.

[18] John E., Bentley "Software Testing Fundamentals –
Concepts, Roles and Terminology: 2005.

[19] Goutam Kumar Saha "Understanding Software
Testing Concepts" ACM 2008.

[20] Mark Uttinga, Alexander Pretschnerb and Bruno
Legeradc" A Taxonomy of Model-Based Testing"
White paper in 200.

[21] Peter Miller "Testing? What testing?" 2000.
[22] SANTOSH KUAMR SWAIN, SUBHENDU

KUMAR PANI, DURGA PRASAD MOHAPATRA
"MODEL BASED OBJECT-ORIENTED
SOFTWARE TESTING" Journal of Theoretical and
Applied Information Technology in 2006.

[23] Cem Kaner, J.D. Ph.D." The Ongoing Revolution in
Software Testing" Software Test & Performance
Conference, December 8, 2004.

[24] Inspection vs. Testing 2003.
[25] Gerry Gaffney "Conducting a Walkthrough" 2002.
[26] "USER ACCEPTANCE TESTING (UAT)

PROCESS" 2008.
[27] Andreas Leitner, Illinca Ciupa, Bertrand Meyer

"Reconciling Manual and Automated Testing : the
Auto Test Experience" 40th Hawaii International
Conference on System Sciences – 2007.

[28] http://en.wikipedia.org/wiki/TestNG
[29] http://www.ibm.com/developerworks/java/library/j-

testng/
[30] http://testng.org/doc/index.html
a. http://beust.com/weblog/
[31] http://en.wikipedia.org/wiki/JUnit
[32] http://www.ibm.com/developerworks/java/library/j-

junit4.html
[33] http://junit.sourceforge.net/doc/faq/faq.htm
[34] http://www.devx.com/Java/Article/31983/0/page/
[35] http://ourcraft.wordpress.com/2008/08/27/writing-a-

parameterized-junit-test/
[36] http://docs.codehaus.org/display/XPR/Migration+to+

JUnit4+or+TestNG
[37] http://www.ibm.com/developerworks/java/library/j-

cq08296/index.html
[38] http://www.cavdar.net/2008/07/21/junit-4-in-60-

seconds/

