
IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

192

How Automated Testing Tools Are Showing Its Impact In

The Field Of Software Testing

Deepti Gaur
1
, Dr. Rajender Singh Chhillar

 2

1M.tech Student, Department Of Computer Science and Application,

M.D University, Rohtak-124001, Haryana, India

deeptigaur50@gmail.com

 2
Professor, Department Of Computer Science and Application,

M.D University, Rohtak-124001, Haryana, India

 Chhillar02@gmail.com

Abstract

As, we know that Software testing is a very vast field in
Software development life cycle. In this paper, we describe
that how automated testing tools are very much convenient
and easy to use which also makes testing faster and more
effective in less time. Actually the world of technology
revolves at fast pace today and among all Testing tools only
automated testing tools makes Software testing more
significant and effective.

Keywords: Selenium RC, Egg plant, Eiffel studio,
Regression testing.

1. Introduction
Testing:-
A Process of evaluating a particular product to determine
whether the product contain any defects.

Software Testing:-
Software testing is a process of evaluating a system by manual
or automatic means and verify that it satisfied specified
requirements or identify difference between expected and
actualresult.
Testing process comes from software development life cycle.
The software process actually consists four parts:-
(a) Plan- Device a plan. Define your objective and determine
the strategy and supporting methods required to achieve that
objective.
(b) DO- Execute the plan. Create the conditions and perform
the necessary training to execute the plan.
(c)CHECK : Check the results. Check to determine whether
work is progressing according to the plan and whether the
results are obtained.
(d)ACTION : Take the necessary and appropriate action if
checkup reveals that the work is not being performed
according to plan or not as anticipated.
Actually Testing have different strategies such as –Manual
testing and Automated testing , Due to which testing is done
by manual tools and Automated tools usually. Testing tools a
lot of them are Automated because it makes the process of
software testing faster and convenient. The world of
technology revolves at a fast pace today, with more due
extension the things are advanced. This is very hard of
software engineers to use the manual tools, because testing
take a lot of time, efforts and resources. Automate software

testing tools functions as Virtual Testers. In software testing,
test automation is the use of special software (separate from
the software being tested) to control the execution of tests, the
comparison of actual outcomes to predicted outcomes, the
setting up of test preconditions, and other test control and test
reporting functions.[1]Commonly, test automation involves
automating a manual process already in place that uses a
formalized testing process. Test automation is the process of
writing a computer program to do testing that would
otherwise need to be done manually. Once tests have been
automated, they can be run quickly and repeatedly. This is
often the most cost effective method for software products
that have a long maintenance life, because even minor patches
over the lifetime of the application can cause features to break
which were working at an earlier point in time.

1.1 Meaning Of Automated Testing:
Automatic testing speeds up the process of testing. One reason
automatic testing is important is it ensures that software is
reliable, especially when updates are made. To assist in this
concept, a software testing workbench is used, which is an
integrated set of tools to support the testing process [12].
Another way to ensure software reliability is using test
redundancy detection. This reduces test maintenance costs and
also ensures the integrity of test suites [11]. It has been shown
that once test cases are written, it is a good idea to update the
test cases when changes are made to the software. If test suites
being updated (test maintenance) are not conducted carefully,
the integrity of the test suites being used will be questioned
[11]. Steps in a test suite can be almost completely automated
using existing tools like JUnit and MuJava and two new tools
to generate compatible test cases [10]. Research has found
that an experiment was done where the suitability of the tool
for generating high-quality test cases was checked [10]. The
tool used two groups of students with the same academic
level, some of whom used the java tool, while others wrote
test cases manually. In the experiment, the students using the
tool obtained much better results than the students who did
not [10].
Automated testing, in which Quality Assurance teams use
software tools to run detailed, repetitive, and data-intensive
tests automatically, helps teams improve software quality and
make the most of their always-limited testing resources.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

193

Automated testing helps teams test faster, allows them to test
substantially more code, improves test accuracy, and frees up
QA engineers so they can focus on tests that require manual
attention and their unique human skills.
Use these best practices to ensure that your testing is
successful and you get the maximum return on investment
(ROI).
1. Decide what Test Cases to Automate
2. Test Early and Test Often
3. Select the Right Automated Testing Tool
4. Divide your Automated Testing Efforts
5. Create Good, Quality Test Data
6. Create Automated Tests that are Resistant to Changes in the
UI.

1. Decide What Test Cases to Automate
It is impossible to automate all testing, the first step to
successful automation is to determine what test cases should
be automated first. The benefit of automated testing is
correlated with how many times a given test can be repeated.
Tests that are only performed a few times are better left for
manual testing. Good test cases for automation are those that
are run frequently and require large amounts of data to
perform the same action. You can get the most benefit out of
your automated testing efforts by automating:

• Repetitive tests that run for multiple builds
• Tests that are highly subject to human error
• Tests that require multiple data sets
• Frequently-used functionality that introduces high

risk conditions
• Tests that are impossible to perform manually
• Tests that run on several different hardware or

software platforms and configurations
• Tests that take a lot of effort and time when doing

manual testing

Success in test automation requires careful planning and
design work. Start out by creating an automation plan. This
plan allows you to identify the initial set of tests to automate,
and serve as a guide for future tests. First, you should define
your goal for automated testing and determine which types of
tests to automate. There are a few different types of testing,
and each has its place in the testing process. For instance, unit
testing is used to test a small part of the intended application.
Load testing is performed when you need to know how a web
service responds under a heavy workload. To test a certain
piece of the application’s UI, you would use functional or
GUI testing.
After determining your goal and which types of tests to
automate, you should decide what actions your automated
tests will perform. Don’t just create test steps that test various
aspects of the application’s behavior at one time. Large,
complex automated tests are difficult to edit and debug. It is
best to divide your tests into several logical, smaller tests.
This structure makes your test environment more coherent and
manageable and allows you to share test code, test data and
processes. You will get more opportunities to update your
automated tests just by adding small tests that address new
functionality. Test the functionality of your application as you
add it, rather than waiting until the whole feature is
implemented.
When creating tests, try to keep them small and focused on
one objective. For example, use separate tests for read-only
versus read/write tests. This separation allows you to use these
individual tests repeatedly without including them in every
automated test.

Once you create several simple automated tests, you can
group your tests into one, larger automated test. You can
organize automated tests by the application’s functional area,
major/minor division in the application, common functions or
a base set of test data. If an automated test refers to other tests,
you may need to create a test tree, where you can run tests in a
specific order.

2. Test Early and Test Often
To get the most out of your automated testing, testing should
be started as early as possible in the development cycle and
run as often as needed. The earlier testers get involved in the
life cycle of the project the better, and the more you test, the
more bugs you find. You can implement automated unit
testing on day one and then you can gradually build your
automated test suite. Bugs detected early are a lot cheaper to
fix than those discovered later in production or deployment.

3. Select the Right Automated Testing Tool
Selecting an automated testing tool is essential for test
automation. There are a lot of automated testing tools on the
market, and it is important to choose the tool that best suits
your overall requirements.
Consider these key points when selecting an automated testing
tool:

• Support for your platforms and technology. Are you
testing .Net, C# or WPF applications and on what
operating systems?

• Flexibility for testers of all skill levels. Can your
QA department write automated test scripts or is
there a need for keyword testing?

• Feature-rich but also easy to create automated tests.
Does the automated testing tool support record-and-
playback test creation as well as manual creation of
automated tests? Does it include features for
implementing checkpoints to verify values,
databases, or key functionality of your application?

• Create automated tests that are reusable,
maintainable and resistant to changes in the
applications UI. Will your automated tests break if
your UI changes?

4. Divide Your Automated Testing Efforts
Usually, the creation of different tests is based on the skill
level of the QA engineers. It is important to identify the level
of experience and skills for each of your team members and
divide your automated testing efforts accordingly. For
instance, writing automated test scripts requires expert
knowledge of scripting languages. Thus, in order to perform
that task, you should have QA engineers that know the script
language provided by the automated testing tool.
Some team members may not be versed in writing automated
test scripts. These QA engineers may be better at writing test
cases. It is better when an automated testing tool has a way to
create automated tests that does not require an in-depth
knowledge of scripting languages, like Test Completes
“keyword tests” capability. A keyword test (also known as
keyword-driven testing) is a simple series of keywords with a
specified action. With keyword tests, you can simulate
keystrokes, click buttons, select menu items, call object
methods and properties, and do a lot more. Keyword tests are
often seen as an alternative to automated test scripts. Unlike
scripts, they can be easily used by technical and non-technical
users and allow users of all levels to create robust and
powerful automated tests.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

194

You should also collaborate on your automated testing project
with other QA engineers in your department. Testing
performed by a team is more effective for finding defects and
the right automated testing tool should allow you to share
your projects with several testers.

5. Create Good, Quality Test Data
Good test data is extremely useful for data-driven testing. The
data that should be entered into input fields during an
automated test is usually stored in an external file. This data
might be read from a database or any other data source like
text or XML files, Excel sheets, and database tables. A good
automated testing tool actually understands the contents of the
data files and iterates over the contents in the automated test.
Using external data makes your automated tests reusable and
easier to maintain. To add different testing scenarios, the data
files can be easily extended with new data without needing to
edit the actual automated test.
Creating test data for your automated tests is boring, but you
should invest time and effort into creating data that is well
structured. With good test data available, writing automated
tests becomes a lot easier. The earlier you create good-quality
data, the easier it is to extend existing automated tests along
with the application's development.

6. Create Automated Tests that are Resistant to Changes
in the UI
Automated tests created with scripts or keyword tests are
dependent on the application under test. The user interface of
the application may change between builds, especially in the
early stages. These changes may affect the test results, or your
automated tests may no longer work with future versions of
the application.
The problem is that automated testing tools use a series of
properties to identify and locate an object. Sometimes a
testing tool relies on location coordinates to find the object.
For instance, if the control caption or its location has changed,
the automated test will no longer be able to find the object
when it runs and will fail. To run the automated test
successfully, you may need to replace old names with new
ones in the entire project, before running the test against the
new version of the application. However, if you provide
unique names for your controls, it makes your automated tests
resistant to these UI changes and ensures that your automated
tests work without having to make changes to the test itself.
This best practice also prevents the automated testing tool
from relying on location coordinates to find the control, which
is less stable and breaks easily.

 There are two general approaches to test automation:
Code-driven testing. The public (usually) interfaces to classes,
modules or libraries are tested with a variety of input
arguments to validate that the results that are returned are
correct.
Graphical user interface A testing framework generates user
interface events such as keystrokes and mouse clicks, and
observes the changes that result in the user interface, to
validate that the observable behavior of the program is
correct.
Test automation tools can be expensive, and are usually
employed in combination with manual testing. Test
automation can be made cost-effective in the long term,
especially when used repeatedly in regression testing.
In Automation Testing the test Engineer or Software Quality
Assurance person should have coding knowledge as they have
to write down the test cases in form of code which when run
and give output according to checkpoint inserted in it.

Checkpoint is the point which is inserted to check any
scenario.
One way to generate test cases automatically is model-based
testing through use of a model of the system for test case
generation but research continues into a variety of alternative
methodologies for doing so In some cases, the model-based
approach enables non-technical users to create automated
business test cases in plain English so that no programming of
any kind is needed in order to configure them for multiple
operating systems, browsers, and smart devices.[2]
What to automate, when to automate, or even whether one
really needs automation are crucial decisions which the testing
(or development) team must make. Selecting the correct
features of the product for automation largely determines the
success of the automation. Automating unstable features or
features that are undergoing changes should be avoided. [3]

1.2 Automation framework and a testing tool

Tools are specifically designed to target some particular test
environment. Such as: Windows automation tool, web
automation tool etc. It serves as driving agent for an
automation process. However, automation framework is not a
tool to perform some specific task, but is an infrastructure that
provides the solution where different tools can plug itself and
do their job in a unified manner. Hence providing a common
platform to the automation engineer doing their job. There are
various types of frameworks. They are categorized on the
basis of the automation component they leverage.
These are:

1. Data-driven testing
2. Modularity-driven testing
3. Keyword-driven testing
4. Hybrid testing
5. Model-based testing

Tool name Produced by Latest version
Selenium Open source 2.20
Egg plant Test plant 2012
Silk test Micro focus 2011
Eiffel studio Eiffel software 7.1 June 2012
Rational Robert IBM Rational 2003

Selenium:-Selenium is an open source, robust set of tools
that supports rapid development of test automation for web-
based applications. This tool is primarily developed in Java
Script and browser technologies and hence supports all the
major browsers on all the platforms. Most of the time, we will
not need to change our scripts for them to work on other
platforms. Selenium provides a record/playback tool for
authoring tests without learning a test scripting language.

Selenium Components There are three variants of Selenium,
which can be used in isolation or in combination to create
complete automation suite for the web applications. Each one
has a specific role in aiding the development of web
application test automation. Selenium IDE
Selenium Core Selenium Rc.

How to Use Selenium:-Select “Selenium IDE” from the
Tools menu in Firefox. By default when the IDE comes up it
has recording turned on. Go to a web site that you want to
record, click on the record button and begin the browsing
task(s). we will notice that as we click and type in the

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

195

browser the IDE is recording everything we are doing. When
we are done, simply end recording and click on the green
arrow to play back the script you just created. Don’t forget to
save your script before closing the IDE . Below are the screen
shots of working of Selenium IDE and the script generated by
IDE.

Selenium Core:- Selenium Core is a test tool for web
applications. Selenium Core tests run directly in a browser,
just as real users do. They run in Internet Explorer, Mozilla
and Firefox on Windows, Linux and Macintosh. It is a simpler
form of Selenium, and suitable for non-developers.
Browser compatibility testing: To test the application if it
works correctly on different browsers and operating systems.
The same script can run on any Selenium platform.
System functional testing: Create regression tests to verify
application functionality and user acceptance.
Selenium Remote Control :- Selenium-RC is the solution for
tests that need more than simple browser actions and linear
execution. We can use Selenium-RC whenever our test
requires logic which is not supported by Selenium-IDE.
Selenium-RC uses the full power of programming languages
to create more complex tests like reading and writing files,
querying a database, and emailing test results.

Java example using Selenium

public void setUp() throws Exception

{

selenium = new DefaultSelenium(

"localhost", 4444, "*chrome",

"http://www.google.com");

selenium.start();

}

public void tearDown() throws Exception

{

selenium.stop();

}

Features

• We can use Java syntax to write test script

• We can read files to get test data

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 03, Sept 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

196

References

[1] olawa, Adam; Huizinga, Dorota (2007). Automated
Defect Prevention: Best Practices in Software
Management. Wiley-IEEE Computer Society Press.
p. 74. ISBN 0-470-04212-5.

[2] "Proceedings from the 5th International
Conference on Software Testing and Validation
(ICST). Software Competence Center Hagenberg.
"Test Design: Lessons Learned and Practical
Implications.". Brian Marick. "When Should a Test
Be Automated?". StickyMinds.com. Retrieved
2009-08-20.

[3] F Tavel, P. 2007 Modeling and Simulation Design.
AK Peters Ltd.

[4] Sannella, M. J. 1994 Constraint Satisfaction and
Debugging for Interactive User Interfaces. Doctoral
Thesis. UMI Order Number: UMI Order No.
GAX95-09398., University of Washington.

[5] Forman, G. 2003. An extensive empirical study of
feature selection metrics for text classification. J.
Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.

[6] Brown, L. D., Hua, H., and Gao, C. 2003. A widget
framework for augmented interaction in SCAPE.

[7] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,
MUMCUT and several other coverage criteria for
logical decisions", Journal of Systems and Software,
2005, in press.

[8] Spector, A. Z. 1989. Achieving application
requirements. In Distributed Systems, S. Mullender

 [9] Macario Polo, Sergio Tendero, Mario Piattini,
Integrating techniques and tools for testing
automation, EBSCO host database, ISSN#
09600833, Wiley Publishers, March 2007.

[10] N. Koochakzadeh, V. Garousi, A Tester-Assisted
Methodology for Test Redundancy Detection,
Advances in Software Engineering, Hindawi
Publishing Corporation, V 2010, Article ID 932686,
2009, URL:
http://www.hindawi.com/journals/ase/2010/932686/

[11] Ian Sommerville, Software Engineering, Eighth
Addition, 2007.

