IJCSMS International Journal of Computer Science &Management Studies, Vol. 12, Issue 03, Sept 2012

ISSN (Online): 2231 —-5268
www.ijcsms.com

How Automated Testing Tools Are Showing Its Impact In
The Field Of Software Testing

Deepti Gaur', Dr. Rajender Singh Chhillar?

M.tech Student, Department Of Computer Science anépplication,

M.D University, Rohtak-124001, Haryana, India

deeptigaur50@gmail.com

2Professor, Department Of Computer Science and Application,

M.D University, Rohtak-124001, Haryana, India

Chhillar02@gmail.com

Abstract
As, we know that Software testing is a very vasidfiin
Software development life cycle. In this paper, describe
that how automated testing tools are very much eoiant
and easy to use which also makes testing fasternzore
effective in less time. Actually the world of tediogy
revolves at fast pace today and among all Testiots tonly

automated testing tools makes Software testing more

significant and effective.

Keywords: Selenium RC, Egg plant, Eiffel studio,
Regression testing.

1. Introduction

Testing:-

A Process of evaluating a particular product teedrine
whether the product contain any defects

Software Testing:-

Software testing is a process of evaluating a systg manual
or automatic means and verify that it satisfied cefjead
requirements or identify difference between expkcsémd
actualresult.

Testing process comes from software developmentlitle.
The software process actually consists four parts:-
(a) Plan- Device a plan. Define your objective and deteemin
the strategy and supporting methods required toeeeththat
objective.

(b) DO- Execute the plan. Create the conditions and perform
execute the plan.
(c)CHECK : Check the results. Check to determine whether

the necessary training to

work is progressing according to the plan and wérethe
results are obtained.

(d)ACTION : Take the necessary and appropriate action if
checkup reveals that the work is not being perfarme
anticipated.

according to plan or not as
Actually Testing have different strategies such—a$anual
testing and Automated testing , Due to which tesiéhdone
by manual tools and Automated tools usually. Testools a
lot of them are Automated because it makes theegsmof

software testing faster and convenient. The world o

technology revolves at a fast pace today, with mdue
extension the things are advancékhis is very hard of
software engineers to use the manual tools, becastiag
take a lot of time, efforts and resources. Autonstfware

192

testing tools functions as Virtual Testers. In waite testing,
test automation is the use of special softw@eparate from
the software being tested) to control the executibtests, the
comparison of actual outcomes to predicted outcorttes
setting up of test preconditions, and other testrob and test
reporting functions!Commonly, test automation involves
automating a manual process already in place thas @
formalized testing process. Test automation ispitoeess of
writing a computer program to do testing that would
otherwise need to be done manually. Once tests haea
automated, they can be run quickly and repeatéltys is
often the most cost effective method for softwaredpcts
that have a long maintenance life, because evearmitches
over the lifetime of the application can causeufezg to break
which were working at an earlier point in time.

1.1 Meaning Of Automated Testing:
Automatic testing speeds up the process of tesing. reason
automatic testing is important is it ensures thaftware is
reliable, especially when updates are made. Tatagsithis
concept, a software testing workbench is used, lhwigcan
integrated set of tools to support the testing @sec[12].
Another way to ensure software reliability is usibest
redundancy detection. This reduces test maintenzoste and
also ensures the integrity of test suites [11hals been shown
that once test cases are written, it is a good tdegdate the
test cases when changes are made to the softiveest $uites
being updated (test maintenance) are not condweteully,
the integrity of the test suites being used will duestioned
[11]. Steps in a test suite can be almost completetomated
using existing tools like JUnit and MuJava and tveav tools
to generate compatible test cases [10]. Researclfobasl
that an experiment was done where the suitabifitthe tool
for generating high-quality test cases was chedkéfl The
tool used two groups of students with the same exoad
level, some of whom used the java tool, while atherote
test cases manually. In the experiment, the stgdesihg the
tool obtained much better results than the studenhis did
not [10].

Automated testing, in which Quality Assurance teamse
software tools to run detailed, repetitive, andaelatensive
tests automatically, helps teams improve softwar@ity and
make the most of their always-limited testing reses.

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 12, Issue 03, Sept 2012

ISSN (Online): 2231 —-5268
www.ijcsms.com

Automated testing helps teams test faster, alllvemtto test
substantially more code, improves test accuracy,feaes up
QA engineers so they can focus on tests that reqoanual
attention and their unique human skills.

Use these best practices to ensure that your gestn
successful and you get the maximum return on invest
(ROI).

1. Decide what Test Cases to Automate

2. Test Early and Test Often

3. Select the Right Automated Testing Tool

4. Divide your Automated Testing Efforts

5. Create Good, Quality Test Data

6. Create Automated Tests that are Resistant to Chamgee
ul.

1. Decide What Test Cases to Automate
It is impossible to automate all testing, the fistep to
successful automation is to determine what testscabould
be automated first. The benefit of automated tgstis
correlated with how many times a given test camepeated.
Tests that are only performed a few times are béfe for
manual testing. Good test cases for automatiorthaxge that
are run frequently and require large amounts ofa dat
perform the same action. You can get the most iemaf of
your automated testing efforts by automating:
¢ Repetitive tests that run for multiple builds
¢ Tests that are highly subject to human error
« Tests that require multiple data sets
« Frequently-used functionality that introduces high
risk conditions
e Tests that are impossible to perform manually
e Tests that run on several different hardware or
software platforms and configurations
e Tests that take a lot of effort and time when doing
manual testing

Success in test automation requires careful planrnd

design work. Start out by creating an automaticanplThis

plan allows you to identify the initial set of tegb automate,
and serve as a guide for future tests. First, ymulsl define
your goal for automated testing and determine whyples of
tests to automate. There are a few different tygfetesting,

and each has its place in the testing processnBtance, unit
testing is used to test a small part of the intdralgplication.
Load testing is performed when you need to know homeb

service responds under a heavy workload. To testrein

piece of the application’s Ul, you would use funaogl or

GUI testing.

After determining your goal and which types of eb

automate, you should decide what actions your aaitean
tests will perform. Don't just create test stepat tiest various
aspects of the application’s behavior at one timarge,

complex automated tests are difficult to edit aethudy. It is

best to divide your tests into several logical, kenatests.

This structure makes your test environment moreit and
manageable and allows you to share test coded#&tatand
processes. You will get more opportunities to updgur

automated tests just by adding small tests thateaddnew
functionality. Test the functionality of your apgdition as you
add it, rather than waiting until the whole featuie

implemented.

When creating tests, try to keep them small andifed on
one objective. For example, use separate testsefat-only

versus read/write tests. This separation allowstgaise these
individual tests repeatedly without including them every

automated test.

193

Once you create several simple automated tests, caou
group your tests into one, larger automated tesiu ¥an
organize automated tests by the application’s fanat area,
major/minor division in the application, common ftions or
a base set of test data. If an automated tessrefather tests,
you may need to create a test tree, where youwratests in a
specific order.

2. Test Early and Test Often

To get the most out of your automated testingjrtgsthould

be started as early as possible in the developoyai¢ and
run as often as needed. The earlier testers gelvie in the
life cycle of the project the better, and the mgoa test, the
more bugs you find. You can implement automatedt uni
testing on day one and then you can gradually byddr
automated test suite. Bugs detected early are ehtdper to
fix than those discovered later in production qoldgment.

3. Select the Right Automated Testing Tool
Selecting an automated testing tool is essential tést
automation. There are a lot of automated testiofston the
market, and it is important to choose the tool thest suits
your overall requirements.

Consider these key points when selecting an autahtesting
tool:

e Support for your platforms and technology. Are you
testing .Net, C# or WPF applications and on what
operating systems?

« Flexibility for testers of all skill levels. Can you
QA department write automated test scripts or is
there a need for keyword testing?

« Feature-rich but also easy to create automatesl test
Does the automated testing tool support record-and-
playback test creation as well as manual creatfon o
automated tests? Does it include features for
implementing checkpoints to verify values,
databases, or key functionality of your applica®ion

. Create automated tests that are reusable,
maintainable and resistant to changes in the
applications Ul. Will your automated tests break if
your Ul changes?

4. Divide Your Automated Testing Efforts

Usually, the creation of different tests is basedtioe skill
level of the QA engineers. It is important to idBnthe level
of experience and skills for each of your team memrstand
divide your automated testing efforts accordinglyor
instance, writing automated test scripts requireper
knowledge of scripting languages. Thus, in ordepadorm
that task, you should have QA engineers that krimnstript
language provided by the automated testing tool.

Some team members may not be versed in writingnaatted
test scripts. These QA engineers may be betteritihgvtest
cases. It is better when an automated testinghta®la way to
create automated tests that does not require afepth
knowledge of scripting languages, like Test Complete
“keyword tests” capability. A keyword test (alsodam as
keyword-driven testing) is a simple series of kegagowith a
specified action. With keyword tests, you can satwil
keystrokes, click buttons, select menu items, adiject
methods and properties, and do a lot more. Keywest are
often seen as an alternative to automated tegitsctinlike
scripts, they can be easily used by technical amdtechnical
users and allow users of all levels to create rblaml
powerful automated tests.

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 12, Issue 03, Sept 2012

ISSN (Online): 2231 —-5268
www.ijcsms.com

You should also collaborate on your automatedriggiroject
with other QA engineers in your department. Testing
performed by a team is more effective for findirgfetts and
the right automated testing tool should allow youshare
your projects with several testers.

5. Create Good, Quality Test Data

Good test data is extremely useful for data-dritessting. The
data that should be entered into input fields dyran

automated test is usually stored in an external fihis data
might be read from a database or any other datecesdike

text or XML files, Excel sheets, and database tabfegood

automated testing tool actually understands théeows of the
data files and iterates over the contents in thieraated test.
Using external data makes your automated testabéusnd
easier to maintain. To add different testing sdesathe data
files can be easily extended with new data withmeding to
edit the actual automated test.

Creating test data for your automated tests is gobnt you

should invest time and effort into creating datattts well

structured. With good test data available, writenggomated
tests becomes a lot easier. The earlier you cozaid-quality
data, the easier it is to extend existing autométsts along
with the application's development.

6. Create Automated Tests that are Resistant to Chges
in the Ul

Automated tests created with scripts or keywordstese
dependent on the application under test. The userface of
the application may change between builds, espgdralthe
early stages. These changes may affect the tests;esr your
automated tests may no longer work with future ieess of
the application.

The problem is that automated testing tools user&ss of
properties to identify and locate an object. Somet a
testing tool relies on location coordinates to fihe object.
For instance, if the control caption or its locatitas changed,
the automated test will no longer be able to fihd bbject
when it runs and will fail. To run the automatedstte
successfully, you may need to replace old names néw
ones in the entire project, before running the éggtinst the
new version of the application. However, if you yide
unique names for your controls, it makes your aateoh tests
resistant to these Ul changes and ensures thataysomated
tests work without having to make changes to tise iteelf.
This best practice also prevents the automatedhgesool
from relying on location coordinates to find thentrol, which
is less stable and breaks easily.

There are two general approaches to test automatio
Code-driven testing. Thaeublic (usually) interface® classes,
modules or libraries are tested with a variety opuit
arguments to validate that the results that arermet are
correct.

A testing framework generates user
interface events such as keystrokes and mousesclard
observes the changes that result in the user auckerfto
validate that the observable behavior of the pnogrs
correct.

Test automation tools can be expensive, and arallysu
employed in combination with manual testing. Test
automation can be made cost-effective in the loagnt
especially when usedepeatedly in regression testing
In Automation Testing the test Engineer or Softw@ueality
Assurance person should have coding knowledgeegshidive

to write down the test cases in form of code whigten run
and give output according to checkpoint inserted itin

194

Checkpoint is the point which is inserted to cheaky a
scenario.

One way to generate test cases automaticaligodel-based
testing through use of a model of the system for test case
generation but research continues into a varietgitefnative
methodologies for doing so In some cases, the ruakdd
approach enables non-technical users to createmated
business test cases in plain English so that ngranoming of
any kind is needed in order to configure them farltiple
operating systems, browsers, and smart deffces.
What to automate, when to automate, or even whather
really needs automation are crucial decisions wthiehtesting
(or development) team must make. Selecting theecbrr
features of the product for automation largely datees the
success of the automation. Automating unstableufestor
features that are undergoing changes should bele6t

1.2 Automation framework and a testing tool
Tools are specifically designed to target someiqader test
environment. Such as: Windows automation tool, web
automation tool etc. It serves as driving agent &r
automation process. However, automation framewsmot a
tool to perform some specific task, but is an istinacture that
provides the solution where different tools cangphbself and
do their job in a unified manner. Hence providingcenmon
platform to the automation engineer doing their. jbbere are
various types of frameworks. They are categorizadtie

basis of the automation component they leverage.
These are:

1. Data-driven testing

2. Modularity-driven testing

3. Keyword-driven testing

4. Hybrid testing

5. Model-based testing
Tool name Produced by Latest version
Selenium Open source 2.20
Egg plant Test plant 2012
Silk test Micro focus 2011
Eiffel studio Eiffel software 7.1 June 2012
Rational Robert IBM Rational 2003

Seleniunt-Selenium is an open source, robust set of tools
that supports rapid development of test automafonveb-
based applications. This tool is primarily develdpe Java
Script and browser technologies and hence suppdirthe
major browsers on all the platforms. Most of theej we will

not need to change our scripts for them to workotimer
platforms. Selenium provides a record/playback tém
authoring tests without learning a test scriptiagguage.

Selenium ComponentsThere are three variants of Selenium,
which can be used in isolation or in combinationcteate
complete automation suite for the web applicatidech one
has a specific role in aiding the development ofbwe
application test automation. Selenium IDE
Selenium Core Selenium Rc.

How to Use Selenium:Select “Selenium IDE” from the
Tools menu in Firefox. By default when the IDE cam it
has recording turned on. Go to a web site that want to
record, click on the record button and begin thewsing
task(s). we will notice that as we click and type the

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 12, Issue 03, Sept 2012

ISSN (Online): 2231 —-5268
www.ijcsms.com

browser the IDE is recording everything we are doiltVhen
we are done, simply end recording and click on dgheen
arrow to play back the script you just created.nDforget to
save your script before closing the IDE . Belowthescreen
shots of working of Selenium IDE and the scripteyated by
IDE.

3 Solonium INF *

fo fot gptons 1P
Base URL | hktofwww.goodle.coln/
@Rn Owak O step @

Source

package com exanple tests;

import com. bz colerim.)
mport fava, ot ege Sattern;

puoiic class HowTest extends SeeneseesCase (
pubbc vod testhlen) throws Exception {
o0, com("WabloThimenbbinGGocde+Sen)
selenu typa(' o 10F);
selnium, DG);
seloniu, wokF orPage Toload("30000");

Log Reforen Info= Clear

Selenium Core:- Selenium Core is a test tool for web
applications. Selenium Core tests run directly ibrawser,
just as real users do. They run in Internet Explovozilla
and Firefox on Windows, Linux and Macintosh. laisimpler
form of Selenium, and suitable for non-developers.
Browser compatibility testing: To test the applioatiif it
works correctly on different browsers and operasggtems.
The same script can run on any Selenium platform.
System functional testing: Create regression testsetify
application functionality and user acceptance.
Selenium Remote Control :-Selenium-RC is the solution for
tests that need more than simple browser actiodslinaar
execution. We can use Selenium-RC whenever our test
requires logic which is not supported by SelenilDi:l
Selenium-RC uses the full power of programming laggsa
to create more complex tests like reading and nygifiiles,
querying a database, and emailing test results.

Java example using Selenium

public void setUp() throws Exception

{

195

selenium = new DefaultSelenium(
"localhost", 4444, "*chrome",

"http://www.google.com™);

selenium.start();

}

public void tearDown() throws Exception

{

selenium.stop();

}

Features

« We can use Java syntax to write test script

. We can read files to get test data

Wirdae, Linus, o ARG (a6 ampneiaie)

(G

i Selenium Cow |

Saeaium Core |

Apelication
Under
Test

[Aram]

Teat

T

>

lana, Pty
Pythan, Pas
PHE or Nt

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 12, Issue 03, Sept 2012

ISSN (Online): 2231 —-5268
www.ijcsms.com

References

[1] olawa, Adam; Huizinga, Dorota (200 Automated
Defect Prevention: Best Practices in Software
Management. Wiley-IEEE Computer Society Press.
p. 74. ISBN 0-470-04212-5.

[2] "Proceedings from the 5th International
Conference on Software Testing and Validation
(ICST). Software Competence Center Hagenberg.
"Test Design: Lessons Learned and Practical
Implications.". Brian Marick. "When Should a Test
Be Automated?". StickyMinds.com. Retrieved
2009-08-20.

[3] F Tavel, P. 2007 Modeling and Simulation Design.
AK Peters Ltd.

[4] Sannella, M. J. 1994 Constraint Satisfaction and
Debugging for Interactive User Interfaces. Doctoral
Thesis. UMI Order Number: UMI Order No.
GAX95-09398., University of Washington.

[5] Forman, G. 2003. An extensive empirical study of
feature selection metrics for text classificatian.
Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.

[6] Brown, L. D., Hua, H., and Gao, C. 2003. A widget
framework for augmented interaction in SCAPE.

[71 Y.T. Yu, M.F. Lau, "A comparison of MC/DC,
MUMCUT and several other coverage criteria for
logical decisions", Journal of Systems and Software
2005, in press.

[8] Spector, A. Z. 1989. Achieving application
requirements. In Distributed Systems, S. Mullender

[9] Macario Polo, Sergio Tendero, Mario Piattini,
Integrating techniques and tools for testing
automation, EBSCO host database, ISSN#
09600833, Wiley Publishers, March 2007.

[10] N. Koochakzadeh, V. Garousi, A Tester-Assisted
Methodology for Test Redundancy Detection,
Advances in Software Engineering, Hindawi
Publishing Corporation, V 2010, Article ID 932686,
2009, URL:
http://www.hindawi.com/journals/ase/2010/932686/

[11] lan Sommerville, Software Engineering, Eighth
Addition, 2007.

196

IJCSMS
www.ijcsms.com

