
IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

100

COMPATIBLE SERVICE RETRIEVAL USING COMPATIBLE SERVICE RETRIEVAL USING COMPATIBLE SERVICE RETRIEVAL USING COMPATIBLE SERVICE RETRIEVAL USING

IMPROVED SIMILARITY MEASUREIMPROVED SIMILARITY MEASUREIMPROVED SIMILARITY MEASUREIMPROVED SIMILARITY MEASURE

N. Arunachalam 1, N. Balasubramanian2, S. Gokulakrishnan3, V. Sathish4

1Assistant Professor, Information Technology
Sri Manakula Vinayagar Engineering College Puducherry, India

2, 3, 4 Student, Information Technology,
Sri Manakula Vinayagar Engineering College Puducherry, India

bala91.kpn@gmail.com

 Abstract
Now-a-days retrieving suitable services become a

prominent need for the user. However available

service retrieving mechanism uses the compatible

similarity between the services so that user can get

likely homogeneous services. This paper work

proposes a document based search which uses

cosine measure for comparing WSDL files for

retrieving similar services. The development of Web

Services and Web Based Application are made into

clusters by their characteristics, and these clusters

are used for the document based search and it has

the advantage of reducing the complexity by

suppressing the number of services during search.

When the number of services increases the

complexity of the retrieval of the services also

increased.

Keywords: Cosine measure, QoS, URBE,

WSDL, and Document based Search.

INTRODUCTION

During the recent years, the number of

publicly available Web services has been

increasing steadily. An important step in

enabling the Service-Oriented Architecture

(SOA) paradigm is the ability of service and

SBA developers (simply referred to as

developers from now on) to be able to retrieve

potentially relevant services. In particular, in

this work we focus on the task assigned to

developers to identify at design-time which

activity is to be performed and to discover and

select the Web services closest to their

requirements. Furthermore, it is also necessary

to be able to identify and replace services

participating in a service composition at run-

time. In this sense, service retrieval, frequently

referred to also as service discovery, is a

critical step for reusing existing services while

developing other services and SBAs. Several

approaches have been proposed in the

literature for Web services retrieval.

We can distinguish between two categories of

solutions: registry-based and ontology-based

ones. Ontology-based approaches do not

usually consider the structure of the Web

service interfaces and they require additional

effort in the form of annotations to produce a

service description. For these reasons, and

despite the effectiveness of ontology-based

approaches, we focus on a registry-based

solution. In particular, we use as the starting

point for our approach the URBE matchmaker

. URBE is an approach for service retrieval

based on the evaluation of similarity between

Web service interfaces. In URBE, each Web

service interface is defined in Web Services

Description Language (WSDL); a

matchmaking algorithm combines the analysis

of their structures with the similarity of the

used terms in order to retrieve relevant services

for purposes of replacing a service.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

101

 URBE performs on average better when

compared to approaches like and for this

reason it was selected as the baseline for our

work. Both URBE and similar solutions

consider not only the structure but also the

semantics of candidate services. They do not

however take into account the purpose of each

element in the service description with respect

to service compatibility. Service compatibility

refers to the property of preservation of

interoperability for internalized changes to one

or both interacting parties (service provider or

consumer), or equivalently, of the capacity for

replacing one service with another (also

referred to as substitutability and

replaceability).

Different elements in the service description

have different effects on interoperability:

adding for example an operation to a WSDL

document does not have any effect on existing

clients of the service; removing an operation

however may affect them dramatically. For

this purpose, the compatibility is preserved as

long as the properties of covariance of output

and contra-variance of input are preserved.

This is a property that is not considered in the

matchmaking algorithms discussed in URBE

and similar approaches.

To this effect, in this work we aim to combine

service retrieval with service compatibility

with the goal of improving the matchmaking of

URBE. The new matchmaking algorithm takes

into account not only the interface structure

and term similarity, but also the importance of

each element for service compatibility.

As a result of this synergy, retrieved services

are not only similar to the required service, but

additionally, a minimum effort is demanded

from the developers in order to be able to use

this service on the composite service or SBA

side. Furthermore, the updated URBE

implementation is shown to perform better

both in terms of precision and average

response time with respect to the older version.

RELATED WORKS

Research on Web services covers a multitude

of issues that are involved throughout the life-

cycle of a Web service or a Service-Based

Application (SBA). Among them, service

description and service composition have

attracted a great deal of attention from

researchers. By conducting an extensive

literature review, we identified two major

interrelated problems: the lack of formal

specifications for service compositions (or

even for atomic Web services) and the inability

of automated Web service composition

approaches (especially the ones that employ AI

planning techniques) to simultaneously satisfy

requirements such as QoS awareness,

dynamicity and scalability in an effective way.

Due to the web services’ heterogeneous nature,

which stems from the definition of several

XML based standards to overcome platform

and language dependence, web services have

become an emerging and promising

technology to design and build complex inter-

enterprise business applications out of single

web-based software components. To establish

the existence of a global component market, in

order to enforce extensive software reuse,

service composition experienced increasing

interest in doing a lot of research effort. This

paper discusses the urgent need for service

composition, the required technologies to

perform service composition. It also presents

several different composition strategies, based

on some currently existing composition

platforms and frameworks, re-presenting first

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

102

implementations of state-of the-art

technologies, and gives an outlook to essential

future research work.

Service compatibility can be distinguished in

two dimensions: Horizontal compatibility (or

service interoperability) and vertical

compatibility (also known as substitutability or

replaceability). Horizontal compatibility or

interoperability of two services expresses the

fact that the services can participate

successfully in an interaction as service

provider and service consumer. The underlying

assumption is that there is at least one context

(configuration of the environment, resource

status and message exchange history) under

which the two services can fulfill their roles.

On the other hand, vertical compatibility or

substitutability (from the provider’s

perspective) or replaceability (from the

consumer’s perspective) of service versions

expresses the requirements that allow the

replacement of one version by another in a

given context. Compatibility is traditionally

further decomposed into backward and

forward. A definition of forward and backward

compatibility with respect to languages in

general, and message exchanges between

producers and consumers in particular.

Forward compatibility means that a new

version of a message producer can be deployed

without the need for updating the message

consumer(s). Backward compatibility means

that a new version of a message consumer can

be deployed without the need for updating the

message producer. Full compatibility is the

combination of both forward and backward

compatibility.

The usual approach for defining what

constitutes a compatible change to a service is

to enumerate all possible compatibility

preserving changes to a service description,

usually a WSDL document. The allowed

changes essentially define the type of delta

between two service versions for which the

versions are compatible and they are usually

expressed in a guideline style.

1) Add (optional) message data types.

2) Add (new) operation.

3) Add (new) port type.

Any other modification like the removal or any

kind of modification to an operation element is

strictly prohibited, as is the modification of the

message data types (with the exception of

addition of optional data types). This guideline

based approach is easily applicable and

requires minimum support infrastructure and

for this reason is widely accepted.

On the other hand, it is also very restrictive

and, even more importantly, it depends on

service developers for deciding what is

compatible and what is not and acting

accordingly. Even if these rules are codified

and embedded into a service development,

they will always be limited by two factors:

their dependency on the particular technology

used (WSDL in this case) and their lack of a

robust theoretical foundation.

For these reasons In order to apply type theory

constructs to service interfaces, assumes that

each service description S is comprised of

records s that represent the conceptual

dependencies inside the service interface

description. A service record s is a subtype of

another record s0 if and only if it has at least

all the typed properties of s0 (and possibly

more) and all the common properties are also

in a sub typing relation. In this case we write s

_ s0.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

103

COSINE SIMILARITY

When documents are represented as term

vectors, the similarity of two documents

corresponds to the correlation between the

vectors. This is quantified as the cosine of the

angle between vectors, that is, the so-called

cosine similar-ity. Cosine similarity is one of

the most popular similarity measure applied to

text documents, such as in numerous in-

formation retrieval applications and clustering

too. Each dimension represents a term with its

weight in the document, which is non-

negative. As a result, the cosine similarity is

non-negative and bounded between [0,1].In

other words, documents with the same com-

position but different totals will be treated

identically. Strictly speaking, this does not

satisfy the second condition of a met-ric,

because after all the combination of two copies

is a differ-ent object from the original

document. However, in practice, when the

term vectors are normalized to a unit length

such as 1, and in this case the representation of

d and d 0 is the same.

URBE MATCHMAKER

The similarity algorithm running in URBE

implements a similarity function fSim : (S; S0)

! [0::1] that, given two service descriptions S –

representing the requested service, and S0 –

representing the available service, returns the

similarity degree as a value included in [0::1]:

the higher the result of fSim, the higher the

similarity between the two interfaces.

Fig 1 provides a high level view of fSim, in

which each service can be represented as a

three-level tree: first, we have S representing a

portType, then the set of operations S:opk, and

finally, the set of parameters (S:opk:inl,

S:opk:outm) representing the parameters of the

supported operations. As a consequence, the

functions which evaluate the similarity among

the whole interfaces (fSim), operations

(opSim), and parameters (inP arSim and outP

arSim) are nested in the same way. More

specifically: fSim returns the similarity

between S and S0.

Figure 1 Tree-based representation and nested comparison in URBE

PROPOSED WORK

The practice of finding a suitable web service

for a given application is termed as service

discovery. For a particular function ample of

services may be available. To find a service the

suits the developer search is a major issue that

has been addressed through solutions of

diverse nature. Even if a matching service of

users interest is found, but when it fails to

synchronous with the application under

Construction, then the process of discovery has

to be redone with some change in the search

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

104

string. Which make the problem more tedious?

To solve the above, a measure called similar

service discovery has gained importance,

wherein similar services to the service in hand

are searched for with the help of similarity

measure algorithm, moreover a compatibility

issue monitoring mechanism as a supplement

to the solution improves the efficiency of

finding a service a better service.

Fig 2: Proposed Architecture

 The aim of the proposed system is to improve

the efficiency as well as time consumed in the

similarity measure. First the number of

candidate service is reduced using

conventional cosine measure which is used for

matching documents.

Then the structure based similarity measure is

used along with compatibility measure in the

existing system.

CONCLUSION

It uses cosine measure to reduce search time.

And also the QoS is also improved. Hence the

most relevant and compatible service is

retrieved. Despite of the above differences,

these measures’ overall performance is similar.

Considering the type of cluster analysis

involved in this study, which is partitioned and

require a similarity or distance measure, we

can see that there are three components that

affect the final results representation of the

objects, distance or similarity measures, and

the clustering algorithm itself. This lead us to

two directions for future work as follows. First,

I plan to investigate the impact of using

different document representation on

clustering performance, and combine the

different representations with similarity

measures. In particular, the Wikipedia as

background knowledge base, and enrich the

document representation by adding related

terms identified by the relationships between

terms in Wikipedia. Wikipedia provides rich

semantic relations between words and phrases,

with a extensive coverage. This will also help

to alleviate the problems with the bag of word

document model, that words must occur

literally and semantic relationships between

words are neglected. Meanwhile, I plan to

investigate the effectiveness of these similarity

measures with a multiview clustering

approach. In many cases we can view a given

document from more than one perspective. For

example, web pages intuitively provide at least

IJCSMS International Journal of Computer Science & Management Studies, Vol. 12, Issue 02, April 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

105

three views—the content text appear in the

web page itself, the anchor text of the outgoing

links that are embedded in the page and the

anchor texts from incoming links.

Conventional clustering normally combines

these different views (if they are taken into

account at all) into a single mixed

representation and uses it for clustering. We

assume that by dividing the mixed

representation up and using the different

aspects individually can provide relevant

information that is well separated according to

its characteristics, therefore benefiting

subsequent clustering.

REFERENCES:

[1]Vasilios Andrikopoulos and Pierluigi Plebani,

“Retrieving Compatible Web Services” 2011 IEEE

International Conference on Web Services,

10.1109/ICWS.2011.24

[2]G. Pirro´ and N. Seco, “Design, implementation

and evaluation of a new semantic similarity metric

combining features and intrinsic information

content,” in OTM ’08: Proceedings of the OTM

2008 Confederated International Conferences,

CoopIS, DOA, GADA, IS, and ODBASE 2008. Part

II on On the Move to Meaningful Internet Systems.

Berlin, Heidelberg: Springer-Verlag, 2008, pp.

1271–1288.

[3]J. Farrel and H. Lausen, “Semantic annotations

for WSDL and XML schema,”

http://www.w3.org/TR/sawsdl/, April 2007.

[4]R. Baeza-Yates and B. Ribeiro-Neto, Modern

Information Retrieval. ACM Press / Addison-

Wesley, 1999

[5]R. Fang, L. Lam, L. Fong, D. Frank, C. Vignola,

Y. Chen, and N. Du, “A version-aware approach for

web service directory,” in International Conference

on Web Services (ICWS) 2007, Jul. 2007, pp. 406–

413.

[6]R. Weinreich, T. Ziebermayr, and D. Draheim,

“A versioning model for enterprise services,” in

Advanced Information Networking and Applica-

tions Workshops, 2007, AINAW ’07. 21st

International Conference on, vol. 2, 2007, pp. 570–

575.

[7]V. Andrikopoulos, A Theory and Model for the

Evolution of Software Services. Tilburg,

Netherlands: Tilburg University Press, 2010, no.

262.

[8] S. R. Ponnekanti and A. Fox, “Interoperability

among independently evolving web services,” ser.

Lecture Notes in Computer Science. Toronto,

Canada: Springer Berlin / Heidelberg, 2004, pp.

331–351.

[9]P. Kaminski, M. Litoiu, and H. Muller,¨ “A

design technique for evolving web services,” in

Proceedings of the 2006 conference of the Center

for Advanced Studies on Collaborative research,

ser. CASCON ’06. New York, NY, USA: ACM,

2006.

[10]A. Brogi and R. Popescu, “Automated

generation of BPEL adapters,” in ICSOC 2006, ser.

Lecture Notes in Computer Science. Springer, 2006,

pp. 27–39.

[11] E Damiani, M. G. Fugini, and C. Bellettini, “A

hierarchy-aware ap-proach to faceted classification

of objected-oriented components,” ACM Trans.

Softw. Eng. Methodol., vol. 8, no. 3, pp. 215–262,

1999

