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Abstract 
Modern probability theory studies chance processes for  which  the  
knowledge  of  previous   outcomes  influence predictions  for  
future   experiments.   In  principle,  when  a sequence of chance 
experiments, all of the past outcomes could influence the predictions 
for the next experiment. In Markov chain type of chance, the 
outcome of a given  experiment can affect the outcome of the 
next  experiment. The system state changes with time and the 
state X and time t are two random variables. Each of these 
variables can be either continuous or discrete. Various degradation 
on photovoltaic (PV) systems can be viewed as different Markov 
states and further degradation can be treated as the outcome of 
the  present state. The PV system is treated as a discrete  state 
continuous time   system with four possible outcomes, namely, s1   
: Good condition, s2   : System with partial degradation failures 
and fully operational, s3   : System with major faults and partially 
working and hence partial  output  power, s4      : System  
completely  fails.  The calculation  of  the  reliability  of  the   
photovoltaic  system  is complicated  since  the  system  have  
elements  or  subsystems exhibiting dependent failures and 
involving repair and standby operations. Markov model is a better 
technique that has much appeal  and  works  well  when  failure  
hazards  and   repair hazards are constant. The usual practice of 
reliability analysis techniques include FMEA((failure  mode and 
effect analysis), Parts count analysis, RBD ( reliability block 
diagram ), FTA( fault tree analysis )  etc. These are logical, 
boolean and block diagram  approaches and never accounts the 
environmental degradation  on  the  performance  of  the  system.  
This  is  too relevant in the case of PV systems which are  
operated under harsh environmental conditions. This  paper is an 
insight into the degradation of performance of PV systems and 
presenting a Markov model of the system by means of the different 
states and transitions between these states. 

 
Keywords: Markov chain, Derating, stochastic matrix, 
transition probability. 
 
I.   INTRODUCTION AND LITERATURE 
REVIEW 

 
The performance of photovoltaic systems varies with  
many  environmental  factors,  viz,  module temperature, 
ambient temperature, long   term 
degradation,  spectral  issues,  irradiance  ,  wind speed,  
wind direction, air gap between modules, dust, rainfall,  
corrosion, water vapour intrusion, delamination  of  
encapsulant  materials,  thermal  

 
 
 
expansion, ultraviolet radiation, humidity, 
mechanical load, salt mist, partial shading, heat island  
impact,  global  climate  change,  summer- winter  climate 
change, Staebler- Wronski effect, Clearness of sky, ageing 
and component derating. These factors cause degradation of 
the PV system during long term exposure to  field. In a 
discrete approach four possible states can be  considered 
for a PV system operating in real field,  namely, good 
condition, system with partial degradation failures and 
fully operational, system with major faults  and  partially  
working  and  hence  partial output power, and the system 
completely fails. 
 
The l i t e r a t u r e    review   reveals   that   the   most 
commonly used reliability analysis techniques can be 
grouped as follows. 
 
Quantitative: The interval between the resulting numbers  
and the ratio of the resulting numbers has a meaning. 
 
Qualitative: The resulting numbers are only used for 
distinction or rank ordering. 
 
Analysis by experts: Based on previous experience in similar 
applications. 
 
FMEA ( failure mo d e   and  effect  analysis  and 
derivatives): Bottom-up analysis of a system, by examining 
all component failures and determining the effects of these 
failures on the entire system. Parts count analysis or 
component count analysis: An analysis technique to 
calculate the failure rate of   a   system   when   the   failure   
rates   of   its components are known. 
 
RBD (reliability block diagrams): a model of the behaviour 
of a system by showing graphically the condition for a 
successful operation. 
 
FTA (fault tree analysis): top-down method, how basic 
events may lead to a certain top-event. 
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These  are  logical,  boolean  and  block  diagram 
approaches and never accounts the environmental degradation  
on  the  performance  of  the  system. This is  too relevant in 
the case of PV systems which  are  operated  under  harsh  
environmental conditions.  This   paper  is  an  insight  into  
the degradation of performance  of PV systems and 
presenting  a  Markov  model  of  the  system  by means  of  
the  different  states  and   transitions between these states. 
Markov model (failure state diagram)  is  good  tool  in  
reliability  analysis  of electronic systems because the 
method is flexible and   gives  a  realistic  model.  The  
method  can include the following: • common cause failures 
• multiple  failures  •  different  repair  times  and  • variable  
failure  rates.  Markov  model  is  a  state diagram  model  
with  circles   and  arrows.  The circles represent the 
component states (working or failed),  the  arrows  stand  for  
the  direction   of transitions between the states (failure or 
repair), so  the  arrows  are  directed  arcs.  The  failure  or 
repair  rates  are  presented  by  the  arrows  with numeric 
values. The component is in state 1, if it is successful, or in 
state 2, if it failed. The mode can move from state 1 to 
state 2 at a  rate of λ12 (the failure  rate),  or  from  state  2  
to  state  1  at µ21(the repair rate). 

 
In  probability  theory,  a  Markov  model  is  a stochastic 
model that  assumes the Markov property. Generally, 
this assumption  enables reasoning and  
computation  with the model that would otherwise  be 
intractable.  The field degradation is considered as  
non repairable and for model simplicity, the PV system is 
treated as a discrete state continuous time system with  
four possible outcomes, namely, s1   : Good condition, s2  :  
System with partial degradation failures and fully  
operational, s3   : System with major faults and  partially  
working  and  hence  partial  output power,  s4  : System 
completely fails. 
 
A Markov chain can be described with the above states as 
follows. : Let there will be a set of states, S = {s1, s2, s3, ...… 
sr}. The process starts in one of these  states  and  moves  
successively  from  one state to another. Each move is called 
a step. If the chain is currently in state si, then it moves to 
state sj at the next step with a probability denoted by pij , 
and  this probability does not depend upon which states the  
chain was in before the current state.  The  probabilities  pij  
are called  transition probabilities. The process can remain 
in the state it is in, and this occurs with probability pii.  An 
initial   probability   distribution,   defined   on   S, specifies 
the starting state. Usually this is done by specifying a 
particular state as the starting state. 
 
Up to now, failures resulting from degradation are not  
typically taken into consideration because of the  
difficulties  in  measuring  the  power  of  an individual 
module in a system. Photovoltaic (PV) modules are often 
considered as the most reliable element  in  PV  systems.  
However,  PV  module reliability  data  are  not  shown  on   
commercial datasheets  in  the same  way as  it  is  with  
other products such as electronic devices and electric 
power  supplies.  It  is  widely  known  that  PV module   

performance  when  deployed  outdoors decreases steadily  
over time. After several years of operation this decrease  
will affect PV module reliability. Reliability evaluation 
based on degradation   models   is   commonly   applied   in 
highly reliable products  as a  cost  effective and confident  
way of evaluating their  reliability.  In this paper a 
degradation model for PV modules is presented and  
subsequently applied in the quantitative  analysis  of  PV  
module  reliability. With this model the different parameters 
related to module reliability such as the reliability function, 
failure  rate  function,  the  Mean  time  to  failure (MTTF) 
or the  warranty period can be assessed based on PV 
module degradation in the field. 
 
II.   COMPONENT DERATING 
 
Component derating is  one of the major factor which 
reduces the reliability and efficiency of any PV system. The 
name normally given to operating a  component  well  
inside  its  normal  operating limits, in order to reduce the  
rate at which the component deteriorates. Conceptually, it 
is easy to see  that,  the  component  may  be  specified  to 
operate  at  high  voltage  and  high  temperature, applying  
those conditions simultaneously would probably be worse 
than applying either one or the ther.  Also  reactions  are  
known  to  proceed  at higher  speeds at higher 
temperatures, an insight originally shared by Arrhenius, one 
would predict 

 
 

Figure 1: Various environmental stresses on PV 
module 

 
reduced degradation, and hence extended life and enhanced 
reliability,   by running a component at lower than its 
maximum category temperature. 
 

Component Standard Low High 
Nameplate 
DC 

0.950 0.880 1.050 

Inverter and 
Transformer 

0.920 0.880 0.980 

Mismatch 0.980 0.970 0.995 
Diodes and 
Connections 

0.995 0.990 0.997 

DC Wiring 0.980 0.970 0.990 
AC Wiring 0.990 0.980 0.993 
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Soiling 0.950 0.300 0.995 
Availability 0.980 0.000 0.995 
Shading 1.000 0.000 1.000 
Sun Tracking 1.000 0.950 1.350 
Age 1.000 0.700 1.000 
Overall  DC- 
AC 

0.770 0.09999 0.96001 

 
TABLE 1 : STC Component Derating Factors of a 
PV System ( NREL and PVWATTS ). 

 
III.   GENERAL MARKOV MODEL 

 
Consider a non repairable system with 
components x1, x2, x3  and x4, such that the system state is 
a function of the states of the components. The  system  is  
denoted  by  X  and  the  system changes  with  time  t,   
which  are  two  random variables. There are four possible 
combinations, namely,   {X,  t}  {(continuous  state,  
continuous time), (discrete state continuous time), 
(continuous state,  discrete time),  (discrete state, discrete  
time)}.  If  the   state  of  the  system  is probability  based,  
then  the  model  is  a  Markov probability   model.   A   
Markov   chain   can   be described with the above states as 
follows. : Let there will be a set of states, S = {s1, s2, s3, ...… 
sr}. The  process  starts  in  one  of  these  states  and 
moves  successively  from  one  state  to  another. Each  
move  is  called  a   step.   If  the  chain  is currently in state 
si, then it moves to state sj at the next step with a probability 
denoted by pij ,  and this probability does not depend upon 
which states the  chain  was  in  before  the  current  state.  
The probabilities pij are called transition probabilities. The 
process can  remain in the state it is in, and this occurs with 
probability pii. An initial probability distribution, 
defined on S, specifies the starting state. Usually this is done 
by specifying a particular state as the starting state. 
Let pi(k) be the probability that the system S will b in  state 

si  ( i = 1,2,....n) after the kth  step and before the (k+1)th 

step. The probabilities pi(k) are called the probabilities of the 

Markov chain. After the kth step, the system could be in any 
one of the n states. Hence, 

n 
Σ pi(k) = 1 - Equation (1) 
i = 1 

The probability distribution  of the states  at  the beginning 
of the process, i.e., 
p1(0), p2(0), p3(0), .., p4(0), .., pn(0), - Equation (2) is  
known as the initial probability distribution of the Markov  
chain. If the initial state S(0) of the system is known with  
certainty, say, S(0) = si, then the initial probability pi(0) 
= 1 and all other initial probabilities are zero.  A Markov  
chain is said to be homogeneous if the transition 
probabilities  Pij  depend only on from what step the 
system passes to which step, i.e., 
Pij = P[S(k) = sj| S(k-1) = si] - Equation (3) The 
transition probabilities Pij of a homogeneous Markov  chain  
form  an  n  x  n  matrix,  called  a transition matrix, given 

by equation (4). The sum of the transition  probabilities in 
any row of the matrix is equal to unity, i.e. , 
 

n 
Σ pij   = 1  ( i = 1,2, ...... , n ) - Equation (4) 
j = 1 
 
A matrix which possesses the property given by equation  
(4) is known as a stochastic matrix. In equation (5), Pi   is  
the probability that a system which  is  in  state  si    
before  a  given  step  will continue to remain in that state  
at the next step. The  matrix  equation  (4)  is  a  general  
transition matrix 

 
 

- Equation (5) 
Now  consider  a  system  for  which  the  initial 
probability  distributions,  Equation  (2)  and  the transition  
probabilities, Equation (5), are known. After the first step, 
the probability that the system is in state si  (i = 1, 2 , ... , 
n) is obtained from the total   probability  theorem   
equation.   The   total probability theorem states that, 

_ 
 
P(S) = P[ ( K and S ) or ( K and S )] –Equation (6) P(S)  =  
P(K)P(  system  is  good  given  that  k  is good) +  
P(compliment  of K)P( system  is  good given that k has 
failed). 
 
 
 
P(S) = P(K)P(S|K) + P(K)P(S|K) – Equation (7) 

 

 
 
The equation is applicable only for two events. It can be 
generalized as follows. If K1, K2, ....... Kn be n
 mutually exclusive events which are 
collectively exhaustive and S is another event in the   
sample   space,  then  the  occurrence  of  S depends on  
the  occurrence of K1, K2, ....... Kn. Therefore , S = (S 
and K1)  + (S and K2)+  ..... + (S and Kn). Now, (S and 
K1), (S and K2), ... (S and 
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Kn) are mutually exclusive since K1, K2, ... Kn  are 
mutually exclusive. 
Hence, P(S) = P(S and K1) + P(S and K2)+ ..... + P(S and 
Kn). 
P(S) = P(K1)P(S|K1) + P(K2)P(S|K2) + ..... + 
P(Kn)P(S|Kn). 

n 
P(S) = Σ P(Ki)P(S|Ki) - Equation (8) 
Before the first step, the system can be in states s1, s2, ..... 
sn  with probabilities p1(0), p2(0), ... pn(0). At the end of 
the first step, the system can be in states s1, s2, ..... sn  with 
different probabilities. The system  states  before  and  after  
the  first  step  is denoted by, s1(0), s2(0), ... sn(0) and s1(1), 
s2(1), ... sn(1) respectively. 

 
The probability that the system is in state si(1) is, P[si(1)] 
= P[s1(0) and si(1)] + P[s2(0) and si(1)] + 
................ + P[sj(0) and si(1)] + ............................. P[si(1)] =  
P[s1(0)] P[si(1) |s1(0)] + P[s2(0)] P[si(1) 
|s2(0)] + ...... + P[sj(0)] P[si(1) |sj(0)] + .................. P[si(1)] 
= p1(0)P1i + p2(0)P2i + ....... + pj(0)Pji + ..... 

n 
Therefore pi(1) = Σ pj(0)Pji – Equation (9) 

j=1 
The probability that the system is in state si  at the end  of  

the  kth   step ,i.e.,  si(k) depends  on  the probabilistic 
states of the system at the end of the (k-1)th  step. This is  
according to the assumption made in a Markov process. 
P[si(k)]  =  P[s1(k-1)  and  si(k)]  +  P[s2(k-1)  and si(k)] + 
................ + P[sj(k-1) and si(k)] + .............. P[si(k)] =  
P[s1(k-1)] P[si(k)|s1(k-1)] + P[s2(k-1)] P[si(k) |s2(k-1)] +.. 
+ P[sj(k-1)] P[si(k) |sj(k-1)] +... P[si(k)] = p1(k-1)P1i + 
p2(k-1)P2i + . + pj(k-1)Pji +.. Therefore, 

n 
pi(k) = Σ pj(k-1)Pji – Equation (10) 

j=1 
This general expression can be used to determine the 
probabilities of the states of the PV system. 
 
IV.   MARKOV MODELING OF 
DEGRADATION 
 
In mathematics, a stochastic matrix (also  termed 
probability matrix, transition matrix, or Markov 
matrix) is a matrix used to describe the transitions of a 
Markov chain. A right transition probability matrix is  a  
square  matrix  each  of  whose  rows consists  of 
nonnegative real numbers, with each row summing to 1. 
The PV system is treated as a discrete state continuous  
time system with four possible outcomes, namely, s1:  
Good condition, s2: System with partial degradation  
failures and fully operational, s3: System with major faults 
and partially working and hence partial output power, s4     
:  System   completely   fails.   The   transition probability 

matrix is written based on the fact that a modern PV  
system  should be capable to give satisfactory performance 
for around 30 years. This time is partitioned into four years 
each as, first 7 years : good and fully working, second 7  
years : partial degradation and fully operational, third 7 
years : major faults and partially working and last 
7 years : complete failure. 
 

Period Y1 Y2 Y3 Y4 
Beginning 0.9 0.06 0.04 0 

Minor 
faults 

0 0.5 0.3 0.2 

Major 
faults 

0 0 0.3 0.7 

Complete 
failure 

0 0 0 1 

 
Table 2: Transition probability matrix of various faults ( 
Y1: Up to 7 years, Y2: 7 to 14 years, Y3 : 14 to 21 years, Y4 
: 21 to 28 years.) 

 
Assume  the   following   probability,   based   on various   
field   study   that,   there   will   be   1% degradation   /year   
in   field   owing   to   various environmental factors, 
namely,   module temperature,  ambient 
temperature, long   term degradation,  spectral  issues,   
irradiance  ,  wind speed,  wind  direction,  ageing  and   
component derating, air gap between modules, dust,  
global climate  change,  summer-winter  climate  change, 
rainfall, corrosion, water  vapour  intrusion, 
delamination  of  encapsulant  materials,  Thermal 
expansion, ultraviolet  radiation,  humidity, 
mechanical load, salt mist etc. 
The Markov directed graph of the four possible states can 
be constructed. Determine the probabilities of 
the defined states of the PV system after it undergoes one, 
two and three inspections. At the beginning the system is 
in good condition after  installation.  The  transition  matrix  
for  the above probability is given by, 

 
 
 
 
 
 
 
 
 
 
 
 
The four states of the PV system are, 
s1    :  Good  condition,  s2    :  System  with  partial 
degradation  failures  and  fully  operational,  s3    : System  
with major faults and partially working and  hence  partial  
output  power, s4   : System 
completely fails. 
The directed graph is shown in figure x. To start with, the 
PV system is in good working condition. Thus, p1 (0) = 1.  
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From  the  directed  graph,  the probability that the system 
state is si ( i = 1,2,3,4 ) after the first inspection or after 7 
years is, 

 
P[s1(1)] = p1(1) = p1(0)P11 = 1 x 0.9   = 0.9 , 
P[s2(1)] = p2(1) = p1(0)P12 = 1 x 0.06 = 0.06 , 
P[s3(1)] = p3(1) = p1(0)P13 = 1 x 0.04   = 0.04 , 
P[s4(1)] = p4(1) = p1(0)P14 = 1 x 0 = 0. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2: The directed graph of the PV system with four 
states from ―No defect‖ to ―Complete failure‖. 
The states of the system after the first step can be obtained  

easily from the graph. But it is a good practice to use the 
general expression given in equation  (10)  for  more   
convenient  use.  From equation (10), 

n 
pi(k) = Σ pj(k-1)Pji . For the second step, 

j=1 
pi(2) = p1(1)P1i + p2(1)P2i + p3(1)P3i + p4(1)P4i. 

p1(2) = p1(1)P11 + p2(1)P21 + p3(1)P31 + p4(1)P41 = 
(0.9 x 0.9) + (0.06 x 0) + (0.04 x 0) +(0 x 0)= 0.81 

 
p2(2) = p1(1)P12 + p2(1)P22 + p3(1)P32 + p4(1)P42 = 
(0.9 x 0.06)+(0.06 x0.5)+(0.04 x 0)+(0 x 0)=0.084 
p3(2) = p1(1)P13 + p2(1)P23 + p3(1)P33 + p4(1)P43 = 
(0.9 x 0.04)+(0.06 x0.3)+(0.04x0.3)+(0x1)= 0.066 

 
p4(2) = p1(1)P14 + p2(1)P24 + p3(1)P34 + p4(1)P44 = 
(0.9 x 0)+ (0.06 x0.2)+ (0.04 x 0.7) + (0 x 1)=0.04 

 
For the third step, from equation (10), 

 
pi(3) = p1(2)P1i + p2(2)P2i + p3(2)P3i + p4(2)P4i. 
Therefore, 
p1(3) = p1(2)P11 + p2(2)P21 + p3(2)P31 + p4(2)P41 = 
(0.81 x 0.9)+(0.084 x 0)+(0.066 x 0)+( 0.04 x 0) = 
0.729. 

p2(3) = p1(2)P12 + p2(2)P22 + p3(2)P32+ p4(2)P42 = 

( 0.81 x 0.06 ) + ( 0.084 x 0.5 ) + ( 0.066 x 0 ) + 
( 0.04 x 0) = 0.0906. 
p3(3) = p1(2)P13 + p2(2)P23 + p3(2)P33+ p4(2)P43 = 

( 0.81 x 0.04 ) + ( 0.084 x 0.3 ) + ( 0.066 x 0.3 ) + 
( 0.04 x 0 ) = 0.0774. 
p4(3) = p1(2)P14 + p2(2)P24 + p3(2)P34+ p4(2)P44 = 
( 0.81 x 0 ) + ( 0.084 x 0.2 ) + (0.066 x 0.7 ) + 
(0.04 x 1) = 0.103. 

 
The above calculated results are the probabilities of the 
states of the PV system after it undergoes through the 
states, s1  : Good condition, s2  : System with partial
 degradation failures and fully 
operational,  s3    : System  with  major  faults  and partially 
working and hence partial output power, and s4  : System 
completely fails. 

 
V.   CONCLUSION AND FUTURE 
SCOPE 

 
In designing a system, environmental parameters, must be  
specifically addressed to ensure that the design is robust. 
Two approaches that can be used to eliminate or mitigate the 
effects of variations in parameter values are: (1) Control  the  
device  and  material  parameter variations  through process 
design and control to hold  them within specified limits for 
a specified time  under   specified  conditions.  This  will  be 
referred to as Parts Control. 
(2) Design circuits and systems to be sufficiently tolerant   
of  variations  in  device  and  material parameters so that 
anticipated variations over time and  stress  do  not  degrade  
system  performance. This will be referred to as Design 
Control. 
 
The u s u a l    practice   of   reliability   analysis   is 
techniques like FMEA, RBD , FTA, Parts count analysis, 
etc. These are logical, boolean and block diagram   
approaches   and   never   accounts   the environmental 
degradation on the performance of the system. This is too 
relevant in the case of PV systems which are operated under 
harsh environmental   conditions.   The   analysis   using 
Markov   model   of  the   system   will   give  the 
probability  of  failure  of  the  system  from  one defined 
derating and degradation state to another. This   will   make   
the   reliability  prediction   by accounting the 
environmental impacts at various periods so that the life 
time analysis and warranty fixation will be  more 
performance oriented. The calculation of the  reliability of 
the photovoltaic system  is  complicated   since   the  system  
have elements   or   subsystems   exhibiting   dependent 
failures and involving repair and standby 
operations. Markov model is a better  technique that has 
much appeal and works well when failure hazards  and  
repair  hazards  are  constant.  The modeling  can  be  
extended  by  accounting  more degradation  stages  so  that  
a  close  microscopic information can be obtained. 
 
 
 

VI.   REFERENCES 
 
[1].   http://www.interfacebus.com/Component_Derating_Guide_line.html 
 



IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012 
ISSN (Online): 2231-5268 
www.ijcsms.com 

IJCSMS 
www.ijcsms.com 

44

[2].   Photovoltaic Module Reliability Model Based on Field Degradation 

Studies( 2008), Manuel Va´zquez1, Ignacio Rey-Stolle2, 1EUITT, 
Institute of Solar Energy, UPM, Madrid, Spain,  2ETSIT, Institute of 
Solar Energy, UPM, Madrid, Spain. 

 
[3].   Progressin Photovoltaics : Rsearch and Applications, ( 2008), Prog. 

Photovolt: Res. Appl. 2008; 16:419–433, Published online 3 March 
2008 in Wiley InterScience (www.interscience.wiley.com)DOI: 
10.1002/pip.825 
 

[4].  MILITARY HANDBOOK ELECTRONIC RELIABILITY DESIGN 
HANDBOOK MIL-HDBK-338B. 1 October 1998 , SUPERSEDING 
MIL-HDBK-338A, 12 October 1988. 

 
[5].  Reliability Engineering(2009), Fourth edition, L.S. Srinath, East –west 

Press, New Delhi. 


