IJCSM S International Journal of Computer Science and M anagement Studies, Vol. 12, Issue 01, January 2012 39

I SSN (Online): 2231-5268
WWW.ijcsms.com

MARKOV CHAIN MODELING OF PERFORMANCE
DEGRADATION OF PHOTOVOLTAIC SYSTEM

E. Suresh Kumar?, Dhiren kumar Behera?, Asis Sarkar®

College of Engneering, Tiruvanthapuram

Gl T,Sarang,Orissa | ndia-759146

3NIT Agartala, India
dkb_igit@rediffmail.com

Abstract
Modern probability theory studies chance procefmeswhich the
knowledge of previous outcomes influence pttalis for
future experiments. In principle, when awaste of chance
experiments, all of the past outcomes could infheetihe predictions
for the next experiment. In Markov chain type ofaobe, the
outcome of a given experiment can affect the autcoof the
next experiment. The system state changes witle tamd the
state X and time t are two random variables. Ea€hthese
variables can be either continuous or discreteiovardegradation
on photovoltaic (PV) systems can be viewed as rdiffe Markov
states and further degradation can be treated asotitcome of
the present state. The PV system is treated ascetd state
continuous time system with four possible outcemmeamely, s
: Good condition, 3 : System with partial degradation failures
and fully operational, 3 : System with major faults and partially
working and hence partial output power, 4 S: System
completely fails. The calculation of the rblidy of the
photovoltaic system is complicated since thgstesn have
elements or subsystems exhibiting dependent réailuand
involving repair and standby operations. Markov elod a better
technique that has much appeal and works waetlenw failure
hazards and repair hazards are constant. Thal psactice of
reliability analysis techniques include FMEA((fatu mode and
effect analysis), Parts count analysis, RBD ( rdligtb block
diagram ), FTA( fault tree analysis ) etc. These #éogical,
boolean and block diagram approaches and nevauats the
environmental degradation on the performance tltg system.
This is too relevant in the case of PV systemsiclwhare
operated under harsh environmental conditions. Taper is an
insight into the degradation of performance of Pytems and
presenting a Markov model of the system by mearthefifferent
states and transitions between these states.
Keywords. Markov chain, stochastic matrix,
transition probability.

Derating,

[. INTRODUCTION AND LITERATURE
REVIEW

The performance of photovoltaic systems varies with

many environmental factors, viz, module tempem
ambient temperature, long term
degradation, spectral issues, irradiance , dveépeed,

wind direction, air gap between modules, dust, fadin
corrosion, water vapour intrusion, delamination of
encapsulant materials, thermal

expansion, ultraviolet radiation, humidity,
mechanical load, salt mist, partial shading, hesland
impact, global climate change, summer- wintdimate
change, Staebler- Wronski effect, Clearness of skging
and component derating. These factors cause ddignaddH
the PV system during long term exposure to fidhl.a
discrete approach four possible states can be idsyes
for a PV system operating in real field, namelgod
condition, system with partial degradation failuresd
fully operational, system with major faults andargmlly
working and hence partial output power, and digtem
completely fails.

review reveals that the smo
reliability analysis techniques cae b

The literature
commonly used
grouped as follows.

Quantitative: The interval between the resulting numbers
and the ratio of the resulting numbers has a meanin

Qualitative: The resulting numbers are only used for
distinction or rank ordering.

Analysis by expertBased on previous experience in similar
applications.

FMEA (failure mode and effect analysis and
derivatives): Bottom-up analysis of a system, barsiing
all component failures and determining the effemftshese
failures on the entire systenParts count analysis or
component count analysisAn analysis technique to
calculate the failure rate of a system whéme failure
rates of its components are known.

RBD (reliability block diagrams): a model of the betlawi
of a system by showing graphically the conditiom #
successful operation.

FTA (fault tree analysis): top-down method, how basic
events may lead to a certain top-event.
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These are logical, boolean and block diagram
approaches and never accounts the environmentsddiggn
on the performance of the system. This is televant in
the case of PV systems which are operated uidesh
environmental conditions. This paper is arsight into
the degradation of performance of PV systems and
presenting a Markov model of the system l®ans of
the different states and transitions betwdesse states.
Markov model (failure state diagram) is good |tom
reliability analysis of electronic systems beeauthe
method is flexible and gives a realistic moderhe
method can include the following: « common causiéufes

» multiple failures < different repair timeand e variable
failure rates. Markov model is a state diagranodel
with circles and arrows. The circles represthe
component states (working or failed), the arrostand for
the direction of transitions between the stqfedure or
repair), so the arrows are directed arcs. Thiture or
repair rates are presented by the arrowsh mimeric
values. The component is in state 1, if it is sesfid, or in
state 2, if it failed. The mode can move from statdo
state 2 at a rate df12 (the failure rate), or from state 2

to state 1 atpy(the repair rate).

In probability theory, a Markov model is tachastic
model thatassumes the Markov property. Generally,
this assumption enables reasoning and
computation with the model that would otherwise
intractable. The field degradation is considered a
non repairable and for model simplicity, the PVteys is
treated as a discrete state continuous time sysiéth
four possible outcomes, namely, s Good condition, 3 :
System with partial degradation failures and fully
operational, § : System with major faults and partially

working and hence partial output powerg s System
completely fails.

A Markov chain can be described with the aboveestats
follows. : Let there will be a set states, $ {s1, 2, %3, ...
sr}. The process starts in one of these states amoves
successively from one state to another. Each r®walled
a step.If the chain is currently in statg, then it moves to
statesj at the next step with a probability denoted fijy,
and this probability does not depend upon whigest the
chain was in before the current state. The pritibab pij
are called transition probabilities.The process can remain
in the state it is in, and this occurs with proligbipii. An
initial probability distribution, defined no S specifies
the starting state. Usually this is done by spéuifya
particular state as the starting state.

Up to now, failures resulting from degradation avet
typically taken into consideration because of the
difficulties in measuring the power of an iwvidual
module in a system. Photovoltaic (PV) modules diteno
considered as the most reliable element in P\stegys.
However, PV module reliability data are ndtown on
commercial datasheets in the same way as itwith
other products such as electronic devices and riglect
power supplies. It is widely known that P\odule

performance when deployed outdoors decreaseslilste
over time. After several years of operation thicrdase
will affect PV module reliability. Reliability evahtion
based on degradation models is commonly liepp in
highly reliable products as a cost effective andfident
way of evaluating their reliability. In this pape
degradation model for PV modules is presented and
subsequently applied in the quantitative analyst PV
module reliability. With this model the differeparameters
related to module reliability such as the religpiliunction,
failure rate function, the Mean time to da& (MTTF)
or the warranty period can be assessed based on PV
module degradation in the field.

[I. COMPONENT DERATING

Component derating is one of the major factor Wwhic
reduces the reliability and efficiency of any P\ét&m. The
name normally given to operating a component well
inside its normal operating limits, in order teduce the
rate at which the component deteriorates. Conchptuta

is easy to see that, the component may beifguk to
operate at high voltage and high temperaapplying
those conditions simultaneously would probably bess
than applying either one or the ther. Also readdi are
known to proceed at higher speeds at higher
temperatures, an insight originally shared by Anibs, one
would predict

Temperature Irradiance
¥ ¥
Mechanical PV Module Humidity
Stress, Wind - b
L &
Atmosphere Moisture,
Salt, dust Rain, Frost

Figure 1: Various environmental stresses on PV
module

reduced degradation, and hence extended life ananerd

reliability, by running a component at lower thia
maximum category temperature.
Componer | Stancard Low High
Namepate 0.95( 0.88( 1.05(C
DC
Inverter and 0.920 0.880 0.980
Transformer
Mismatch 0.980 0.970 0.995
Diodes anc 0.99¢ 0.99( 0.997
Connections
DC Wiring 0.98( 0.97( 0.99(
AC Wiring 0.99( 0.98( 0.99:
1JCSMS

WWW.ijcsms.com



IJCSM S International Journal of Computer Science and M anagement Studies, Vol. 12, Issue 01, January 2012 41

I SSN (Online): 2231-5268
WWW.ijcsms.com

Soiling 0.95( 0.30( 0.99¢
Availability 0.98( 0.00( 0.99t
Shading 1.000 0.000 1.000
Sun Tracking | 1.00( 0.95( 1.35(
Age 1.00(C 0.70( 1.00(
Overall DC- 0.77( 0.0999¢ | 0.9600:
AC

TABLE 1 : STC Component Derating Factors of a
PV System ( NREL and PVWATTS).

1. GENERAL MARKOV MODEL

Consider a non repairable system with
components ¥ X2, X3 andX4, such that the system state is
a function of the states of the components. Thatesy is
denoted by X and the system changes withe tim
which are two random variables. There are foossible
combinations, namely, {X, t} {(continuous <tat
continuous time), (discrete state continuous time),
(continuous state, discrete time), (discrete estdiscrete
time)}. If the state of the system is prbitity based,
then the model is a Markov probability modelA
Markov chain can be described with the abstetes as
follows. : Let there will be a set sfates, S {s1, 92, 3. -.....
s} The process starts in one of these statewd
moves successively from one state to anotBach
move is called astep. If the chain is currently in state
s, then it moves to statg at the next step with a probability
denoted bypij , and this probability does not depend upon
which states the chain was in before the ettrrstate.
The probabilitiespij are calledtransition probabilities.The
process can remain in the state it is in, anddb@rs with
probability pii. An initial probability distribution,
defined onS, specifies the starting state. Usually this isalon
by specifying a particular state as the startiagest

Let pi(k) be the probability that the system S will b state

s (i=1,2,..n) after the tE step and before the (kﬁf)
step. The probabilitiesjfk) are called the probabilities of the

Markov chain. After the tlp step, the system could be in any

one of the n states. Hence,
n
Ypk)=1
i=1

The probability distribution of the states ae theginning

of the process, i.e.,

p1(0), p2(0), P3(0). ., PK0), .., M(0), - Equation (2) is

known as the initial probability distribution ofehMarkov

chain. If the initial state S(0) of the system isolvn with

certainty, say, S(0) =jsthen the initial probability j0)

= 1 and all other initial probabilities are zerd. Markov

chain is said to be homogeneous if the transition

probabilities | depend only on from what step the

system passes to which step, i.e.,

Pij =P[S(k) = ¢l S(k-1) = § - Equation (3) The
transition probabilities i of a homogeneous Markov chain
form an n x n matrix, called a transitiontrha given

- Equation (1)

by equation (4). The sum of the transition prolidds in
any row of the matrix is equal to unity, i.e. ,

- Equation (4)

A matrix which possesses the property given by ggoa
(4) is known as a stochastic matrix. In equation & is

the probability that a system which is in statg

before a given step will continue to remaintliat state
at the next step. The matrix equation (4) isgeneral
transition matrix

Pn Pz Py Pna

Pn Pz Py Pun

g

Pa Po Py Pu
Pnl P]:L: ..... Pn_] ....... Pn.u
- Equation (5)
Now consider a system for which the initial

probability distributions, Equation (2) andettransition
probabilities, Equation (5), are known. After thestf step,
the probability that the system is in state(s=1, 2, ...,
n) is obtained from the total probability  thewre
equation. The total probability theorem stdkbex,

P(S)=P[(Kand S) or ( K and S )] —-Equation B§p) =
P(K)P( system is good given that k is goot)
P(compliment of K)P( system is good given thatds
failed).

P(S) = P(K)P(SIK) + P(K)P(S|K) — Equation (7)

The equation is applicable only for two eventscdh be
generalized as follows. If K K2, ....... Kn be n

mutually exclusive  events which are
collectively exhaustive and S is another event lie t
sample space, then the occurrence of S dspen
the occurrence of K Ko, ....... Kn. Therefore , S = (S
and K1) + (S and )+ ... + (S and K). Now, (S and
K1), (S and K), ... (S and
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Kn) are mutually exclusive since 1IKK2 .. Kn are
mutually exclusive.
Hence, P(S) = P(S andiK + P(S and )+ ..... + P(S and
Kn).
P(S) = PMIPESK) +
P(Kn)P(S|Kn).

n
P(S) =X P(K))P(S|K) - Equation (8)
Before the first step, the system can be in statesp, .....
sn with probabilities p(0), p2(0), ... ;(0). At the end of
the first step, the system can be in staiesxs..... $ with

different probabilities. The system states befared after
the first step is denoted by(8), £(0), ... $(0) and (1),

s2(2), ... (1) respectively.

P(KP(SIK) + ... +

The probability that the system is in stat€lyis, P[$(1)]
= P[s1(0) and g1)] + P[$(0) and g1)] +

................ + Pjg0) and 1)] + ...oovovvivee R(R)] =
P[s1(0)] P[s(1) [s1(0)] + P[2(0)] P[s(1)
[200)] + ...... + P[R0)] P[S(1) I§(O)] + «vovvee P[&1)]
= p1(0)P1j + p2(0)P2j + ....... + pO)Rji + ...

n
Therefore p(1) =X pj(0)Ri — Equation (9)

=1

The probability that the system is in statea the end of
the kt step ,i.e., igk) depends on the probabilistic
states of the system at the end of the (K-19tep. This is
according to the assumption made in a Markov proces
Pls(k)] = P[si(k-1) and gk)] + P[g(k-1) and gKk)] +
................ + Pjgk-1) and gK)] + ............ PgK)] =
Plsi(k-1)] Pls(K)Isi(k-1)] + P[(k-1)] P[s(K) [2(k-1)] +..
+ P[§(k-1)] P[s(K) I§(k-1)] +... P[$(K)] = p1(k-1)P1j +
p2(k-1)P2i +. + g(k-1)Rji +.. Therefore,

n
pi(k) = X pj(k-1)Ri

=1
This general expression can be used to determire th
probabilities of the states of the PV system.

— Equation (10)

V. MARKOV MODELING OF
DEGRADATION

In mathematics, a stochastic matrix (also termed
probability matrix, transition matrix, or  Markov
matrix) is a matrix used to describe the transgtimi a
Markov chain. A right transition probability matrils a
square matrix each of whose rows consists of
nonnegative real numbers, with each row summind.to
The PV system is treated as a discrete state cmutin
time system with four possible outcomes, namely, s
Good condition, & System with partial degradation
failures and fully operational,3s System with major faults
and partially working and hence partial output povws
System completely fails. The transitigpmobability

matrix is written based on the fact that a modend P
system should be capable to give satisfactoryopmidnce
for around 30 years. This time is partitioned ifdar years
each as, first 7 years : good and fully workingcosel 7
years : partial degradation and fully operatiortalrd 7
years : major faults and partially working and last

7 years : complete failure.

Period Y1 Y2 Y3 Y4
Beginning| 0.€ 0.06 0.04 0
Minot 0 0.t 0.2 0.2
faults

Major 0 0 0.2 0.7
faults

Complete 0 0 0 1
failure

Table 2: Transition probability matrix of variouauits (
Y1: Upto 7 years, Y2: 7 to 14 years, Y3 : 14 toyRars, Y4
: 21 to 28 years.)

Assume the following probability, based \@rious
field study that, there will be 1% dagamtion /year
in field owing to various environmental tas,

namely, module temperature, ambient
temperature,long term degradation, spectralsueis,
irradiance , wind speed, wind direction, ageirand

component derating, air dust,
global climate change,

rainfall, corrosion,

gap between modules,
summer-winter climatearae,
water vapour intrusion,
delamination  of  encapsulant materials, @ Thermal
expansion, ultraviolet radiation, humidity,
mechanical load, salt mist etc.
The Markov directed graph of the four possibleestatan
be constructed. Determine the probabilities of
the defined states of the PV system after it urmksgone,
two and three inspections. At the beginning thetesysis
in good condition after installation. The trdimsi matrix
for the above probability is given by,

0% 006 004 0O

=
=
LA

0.3 0.2
0 0 0.3 0.7

0 0 0 1

The four states of the PV system are,

s1 : Good condition, System with partial
degradation failures and fully operational s: System
with major faults and partially working and henpartial
output power, & . System
completely fails.

The directed graph is shown in figure x. To stathwthe

PV system is in good working condition. Thus, p) 1.
IJCSM S
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From the directed graph, the probability thad system
state is g (i = 1,2,3,4 ) after the first inspection or affér
years is,

Pls(1)] = m(1) =p(0)P1=1x0.9 = 0.9,
P[s(1)] = p(1) = p(0)P2 =1 x 0.06 = 0.06,
Plss(1)] = p3(1) = p(0)Pi3 =1 x 0.04 =0.04,
Plsy(1)] = m(1) =p(0)Py=1x0  =0.

09 0.06 0.04 0
T T P e
{ 0061 w03 f ¥ 07 ( ¥

51 » 52 53 » 54

0.04 0.2

Figure 2: The directed graph of the PV system viithr
states from-No defecf| to —Completefailure]|.

The states of the system after the first step @anhtained
easily from the graph. But it is a good practiceuse the
general expression given in equation (10) for remo
convenient use. From equation (10),
n
pi(k) = p(k-1)R; . For the second step,
=1
Pi(2) = p(1)Pui + P2(1)Pai + pa(1)Psi + pa(1)Pai.
P1(2) = P(1)Pr1 + p2(1)Por + pa(1)Pa1 + pa(1)Pay =
(0.9x0.9) +(0.06 x0) +(0.04 x 0) +(0 x 0)=0.8

P2(2) = p(1)Pr2 + P2A(1)Po2 + Pa(1)Ps2 + pa(1)Paz =
(0.9 X 0.06)+(0.06 X0.5)+(0.04 x 0)+(0 X 0)=0.084
P3(2) = P(1)Pi3 + P2(1)Paz + P3(1)Pss + pa(1)Pas =
(0.9 x 0.04)+(0.06 x0.3)+(0.04x0.3)+(0x1)= 0.066

P4(2) = Pu(1)Prs + P2(1)Pos + P3(1)Pas + pa(1)Pas =
(0.9 x 0)+ (0.06 X0.2)+ (0.04 x 0.7) + (0 x 1)=0.04

For the third step, from equation (10),

Pi(3) = P(2)Pui + PA2)Pai + pa(2)Psi + pa(2)Pai.
Therefore,

P1(3) = Pu(2)Pr1 + P(2)P21 + p3(2)Ps1 + pa(2)Pa1 =
(0.81 X 0.9)+(0.084 X 0)+(0.066 X 0)+( 0.04 X 0) =
0.729.

P2(3) = PL(2)Pr2 + P2(2)P22 + P3(2) Pzt pa(2)Paz=

(0.81x0.06) + (0.084x0.5) + (0.066 x0) +
(0.04 x 0) = 0.09086.

P3(3) = Pu(2)P13 + P2(2)Pas + P3(2)Paat pu(2)Pas=

(0.81x 0.04) + (0.084 x 0.3 ) + ( 0.066 X 0:8)
(0.04x0) = 0.0774.

P4(3) = Pu(2)Pra + P2(2)P2a + Pa(2)Psat pa(2)Paa=
(0.81x0) + (0.084 x 0.2) + (0.066 x 0.7 ) +
(0.04 x 1) = 0.103.

The above calculated results are the probabiliieghe
states of the PV system after it undergoes throtigh
states, s : Good condition, 3 : System with partial

degradation failures and fully
operational, $ : System with major faults and partially
working and hence partial output power, agd s System
completely fails.

V. CONCLUSION AND FUTURE
SCOPE

In designing a system, environmental parameterst rbe
specifically addressed to ensure that the desigrobsist.
Two approaches that can be used to eliminate agatét the
effects of variations in parameter values are: Cbntrol the
device and material parameter variations thnopgpcess
design and control to hold them within specifiéaits for
a specified time under specified conditiondhisT will be
referred to as Parts Control.

(2) Design circuits and systems to be sufficientierant
of variations in device and material paramsess that
anticipated variations over time and stress @b degrade
system performance. This will be referred to asigre
Control.

The usual practice  of reliability analysisis
techniques like FMEA, RBD , FTA, Parts count analys
etc. These are logical, boolean and block diagram
approaches and never accounts the envinaiaie
degradation on the performance of the system. Ehi®o
relevant in the case of PV systems which are opénatder
harsh environmental conditions. The analysissing
Markov model of the system will give eth
probability of failure of the system from eodefined
derating and degradation state to another. Thil wmake
the reliability prediction by accounting the
environmental impacts at various periods so that life
time analysis and warranty fixation will be more
performance oriented. The calculation of the béliy of
the photovoltaic system is complicated sirtbe system
have elements or subsystems exhibiting g
failures and involving repair and standby
operations. Markov model is a better technique Lzs
much appeal and works well when failure hazardsd an
repair hazards are constant. The modeling dan
extended by accounting more degradation stagesthat
a close microscopic information can be obtained.
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