
IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

31

IMPACT OF IMPACT OF IMPACT OF IMPACT OF SSSSOFTOFTOFTOFT----ERROR IN ERROR IN ERROR IN ERROR IN RRRROBUST OBUST OBUST OBUST

CCCCONFIGURABLE ONFIGURABLE ONFIGURABLE ONFIGURABLE SSSSYSTEM YSTEM YSTEM YSTEM DDDDESIGN USING REAL ESIGN USING REAL ESIGN USING REAL ESIGN USING REAL

TTTTIME OPERATING SYSTEM IME OPERATING SYSTEM IME OPERATING SYSTEM IME OPERATING SYSTEM

M.Shankar1, Dr.M.Sridar2, Dr.M.Rajani3

1Associate Professor & Head for UG & PG studies

Department of Electrical and Electronics Engineering,
Kuppam Engineering College, Kuppam, Andhra Pradesh, India

 Magaprajin@gmail.com

2Director International Relations
Bharath University,

Chennai, 600073, Tamilnadu, India,
deanrdinter@bharathuniv.ac.in

3Director of R & D,
Bharath University,

Chennai, 600073, Tamilnadu, India,
deanrd@bharathuniv.ac.in

Abstract

This paper investigates the sensitivity of real-time
systems running applications under operating systems
that are subject to soft-errors. A procedure for
characterizing the soft error susceptibility of nodes in a
logic circuit, and a heuristic procedure for selecting the
set of nodes for partial duplication are described. Third,
the correctness of embedded systems is currently
jeopardized by soft errors that may render control
systems inoperable. In general, soft errors are
increasingly a problem due to smaller fabrication sizes
and deployment in harsh environments. A full set of
experimental results demonstrate the cost-effective
tradeoffs that can be achieved. First, architects must
understand the impact of soft errors on their designs.
Second, they must select judiciously from among
available techniques to reduce this impact in order to
meet their reliability targets with minimum overhead
Two reduction heuristics, cluster sharing reduction and
dominant value reduction, are used to reduce the soft
error failure rate significantly with a fraction of the
overhead required for conventional TMR. However,
FPGA’s vulnerability to hard and soft errors is a major
weakness to robust configurable system design. To
eliminate the soft memory errors that are induced by
cosmic rays, memory manufacturers must either produce
designs that can resist cosmic ray effects or else invent
mechanisms to detect and correct the errors.
Keywords: Real-Time OS, soft-error, Embedded,
configurable operating system.

1. INTRODUCTION

A real-time operating system (RTOS) is an
operating system that supports and guarantees
timely responses to external and internal events of
real-time systems An RTOS monitors, responds to,
and controls an external environment, which is

connected to the computer system through sensors,
actuators, or other input-output (I/O) devices. In a
real-time system in general and an RTOS in
particular, the correctness of system behaviours
depends not only on the logical results of
computation but also on the time point at which the
results are obtained. Real-time systems can be
divided into hard and soft real-time systems. In the
former, a failure to meet timing constraints will be
of serious consequences, while in the latter [1], a
timing failure may not significantly affect the
functioning of the system. A real-time system is
one whose correctness involves both the logical
correctness of outputs and their timeliness. It must
satisfy response-time constraints or risk severe
consequences including failure. Real-time systems
are classified as hard, firm or soft systems. In hard
real-time systems, failure to meet response-time
constraints leads to system failure.

Firm real-time systems have hard deadlines, but
where a certain low probability of missing a
deadline can be tolerated. Systems in which
performance is degraded but not destroyed by
failure to meet response time constraints are called
soft real-time systems. The intelligent time slice for
round robin architecture for real time operating
systems is a modified version of simple round robin
architecture. Simple round robin architecture
cannot be implemented in real time operating
systems because of high context switch rate, larger
waiting time and larger response time. Because of
these performance criteria of the round robin
architecture is not suitable to implement in real
time systems. Real time operating systems have no
hard deadlines for tasks but missing of deadlines in

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

32

real time operating systems will degrade the system
performance. The proposed algorithm covers all the
drawbacks of round robin architecture by reducing
the number of context switches, reducing the
waiting time, reducing the response time thereby
increasing the system throughput. The clock-driven
schedulers are those in which the scheduling points
are determined by the interrupts received from a
clock. In the event-driven ones, the scheduling
points are defined by certain events which
precludes clock interrupts. The hybrid ones use
both clock interrupts as well as event occurrences
to define their scheduling points.

Event-driven schedulers:
• Simple priority-based
• Rate Monotonic Analysis (RMA)
• Earliest Deadline First (EDF)

We think that the use of a thread dedicated to the
task scheduling makes the modelling of some
scheduling policies easier, like modelling the Time
Sharing algorithm for example. However, this
approach increases the simulation duration since
there is a context switch for each call to the
scheduler and each return, what is not the case
when we use procedure calls. In the case of using
procedure [2] calls, the only thread switches are
those of the tasks of the system we’re designing
that occur. Generally speaking, a real-time system
is composed of a set of tasks, each running a
sequential algorithm, and communicating between
them with high-level communication mechanisms.

Synchronization: Based on events or Semaphore.

Message passing: Based on message queues.

Data sharing: Based on global data protected by
mutual exclusion.

After having selected the basic behaviours shared
by traditional RTOS, we have implemented them in
a nucleus exporting a few service classes. These
generic services will then serve as a founding layer
for developing each emulated RTOS API,
according to their own flavour and semantics. In
order for this layer to be architecture neutral, the
needed support for hardware control and real-time
capabilities will be obtained from underlying host
software architecture, through a rather simple
standardized interface [3]. Thus, porting the
nucleus to a new real-time architecture will solely
consist in implementing this low-level interface for
the target platform.

Fig.1 Basic Services Provided by a Real-Time Operating System

Kernel

1.1 Classification of RTOS

RTOS’s are broadly classified into three types,
namely, Hard Real Time RTOS, Firm Real Time
RTOS and Soft Real Time RTOS as described
below:

Hard real-time: Degree of tolerance for missed
deadlines is extremely small or zero. A missed
deadline has catastrophic results for the system
Firm real-time: missing a deadline might result in
an unacceptable quality reduction

Soft real-time: Dead lines may be missed and can
be recovered from. Reduction in system quality is
acceptable

1.2 Features of RTOS

The design of an RTOS is essentially a balance
between providing a reasonably rich feature set for
application development and deployment and, not
sacrificing predictability and timeliness. A basic
RTOS will be equipped with the following
features:

Multitasking and Preemptibility An RTOS must
be multi-tasked and perceptible to support multiple
tasks in real-time applications. The scheduler
should be able to pre-empt any task in the system
and allocate the resource to the task that needs it
most even at peak load.

Task Priority Pre-emption defines the capability to
identify the task that needs a resource the most and
allocates it the control to obtain the resource. In
RTOS, such capability is achieved by assigning
individual task with the appropriate priority level.
Thus, it is important for RTOS to be equipped with
this feature.

Reliable and Sufficient Inter Task
Communication Mechanism
For multiple tasks to communicate in a timely
manner and to ensure data integrity among each
other, reliable and sufficient inter-task
communication and synchronization mechanisms
are required [4].

Priority Inheritance

To allow applications with stringent priority
requirements to be implemented, RTOS must have

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

33

a sufficient number of priority levels when using
priority scheduling.

Fig.2. General Architecture of RTOS

An operating system generally consists of two
parts: kernel space (kernel mode) and user space
(user mode). Kernel is the smallest and central
component of an operating system. Its services
include managing memory and devices and also to
provide an interface for software applications to
use the resources. Additional services such as
managing protection of programs and multitasking
may be included depending on architecture of
operating system. There are three broad categories
of kernel models available

1.3 Monolithic kernel

A monolithic kernel is a kernel architecture where
the entire kernel is run in kernel space in supervisor
mode. In common with other architectures
(microkernel, hybrid kernels), the kernel defines a
high-level virtual interface over computer
hardware, with a set of primitives or system calls to
implement operating system services such as
process management, concurrency, and memory
management in one or more modules.

1.4 Microkernel

QNX Neutrino is based on real client/server
architecture and consists of microkernel and
optional cooperating processes. The microkernel
implements only the core services, like threads,
signals, message passing, synchronization,
scheduling and timer services. Additional
functionality is implemented in cooperative
processes, which act as server processes and
respond to the request of client processes [5]. In
this case the application or any other functional
modules act as a client. This technique is based on
message oriented communication model.
Communication model uses message bridges for
message transfer to any node in the network. In that
way the distributed character of QNX is deployed
in its design.

1.5 Prototype Exokernels

We have implemented a prototype Exokernels
system based on secure bindings, visible
revocation, and abort protocols. It includes an
Exokernels (Aegis) and a UN trusted library
operating system (ExOS). We use this system to
demonstrate several important properties of the
Exokernels architecture: (1) Exokernels can be
made efficient due to the limited number of simple
primitives they must provide; (2) low-level secure
multiplexing of hardware resources can be
provided with low overhead; (3) traditional
abstractions, such as VM and IPC, can be
implemented efficiently at application level, where
they can be easily extended, specialized, or
replaced; and (4) applications can create special-
purpose implementations of abstractions, tailored to
their functionality and performance needs. The
concept is orthogonal to that of micro- vs.
monolithic kernels by giving an application
efficient control over hardware. It runs only
services protecting the resources (i.e. tracking the
ownership, guarding the usage, revoking access to
resources, etc) by providing low-level interface for
library operating systems (libOSes) and leaving the
management to the application.

1.6 RTOS kernel Service

Multiprocessor real-time operating system (RTOS)
kernel is designed as a software platform for
System on Chip (SoC) applications and
hardware/software co design research purposes.
This multiprocessor RTOS kernel has the key
features of an RTOS, such as multitasking
capabilities, event-driven priority-based pre-
emptive scheduling; and interprocess
communication and synchronization. The "kernel”
of a real-time operating system ("RTOS”) provides
an "abstraction layer” that hides from application
software the hardware details of the processor (or
set of processors) upon which the application
software will run. In doing so, it supplies five main
categories of basic services to application software.
The most basic category of kernel services is task
management. This set of services allows
application software developers to design their
[6,7] software as a number of separate "chunks” of
software – each handling a distinct topic, a distinct
goal, and perhaps its own real-time deadline. Each
separates "chunk” of software is called a "task”.
Services in this category include the ability to
launch tasks and assign priorities to them. The
main RTOS service in this category is the
scheduling of tasks as the embedded system is in
operation. The task scheduler controls the
execution of application software tasks, and can
make them run in a very timely and responsive
fashion.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

34

Fig. 3 RTOS Kernel Services

 Embedded Configurable Operating System (eCos):
eCos is provided as an open source runtime system
supported by the GNU open source development
tools. Developers have full and unfettered access to
all aspects of the runtime system. No parts of it are
proprietary or hidden, and you are at liberty to
examine, add to, and modify the code as you deem
necessary. These rights are granted to you and
protected by the eCos license. It also grants you the
right to freely develop and distribute applications
based on eCos. We welcome all contributions back
to eCos such as board ports, device drivers and
other components, as this helps the growth and
development of eCos, and is of benefit to the entire
eCos community. One of the key technological
innovations in eCos is the configuration system.

The configuration system allows the application
writer to impose their requirements on the run-time
components, both in terms of their functionality
and implementation, whereas traditionally the
operating [8,9] system has constrained the
application's own implementation. Essentially, this
enables eCos developers to create their own
application-specific operating system and makes
eCos suitable for a wide range of embedded uses.
Configuration also ensures that the resource
footprint of eCos is minimized as all unnecessary
functionality and features are removed. The
configuration system also presents eCos as
component architecture. This provides a
standardized mechanism for component suppliers
to extend the functionality of eCos and allows
applications to be built from a wide set of optional
configurable run-time components. Components
can be provided from a variety of sources including
the standard eCos release, commercial third party
developers and open source contributors.

2. Literature survey

System-on-a-chip (SoC) technology is the
packaging of all the necessary electronic circuits
and parts for a "system" (such as a cell phone or
digital camera) on a single integrated circuit (IC),
generally known as a microchip . For example, a
system-on-a-chip for a sound-detecting device
might include an audio receiver, an analog-to-
digital converter (ADC), a microprocessor ,
necessary memory , and the input/output logic
control for a user - all on a single microchip.
System-on-a-chip technology is used in small,
increasingly complex consumer electronic devices.

Some such devices have more processing power
and memory than a typical 10-year-old desktop
computer. In the future, SoC-equipped nano robots
of microscopic dimensions) might act as
programmable antibodies to fend off previously
incurable diseases. SoC video devices might be
embedded in the brains of blind people, allowing
them to see; SoC audio devices might allow deaf
people to hear. Handheld computers with small
whip antennas might someday be capable of
browsing the Internet at megabit-per-second speeds
from any point on the surface of the earth.

We were motivated to measure the area,
performance and power consumption gap between
field-programmable gate arrays (FPGAs) and
standard cell application-specific integrated circuits
(ASICs) for the following reasons: In the early
stages of system design, when system architects
choose their implementation medium, they of- ten
choose between FPGAs and ASICs. Such decisions
are based on the differences in cost (which is
related to area), performance and power
consumption between these implementation media
but to date there have been few attempts to quantify
these differences. A system architect can use these
measurements to access whether implementation in
an FPGA is feasible.

Fig 4.Multiprocessor System-on-a-Chip [MPSoC]

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

35

MPSoC architecture has become an unavoidable
part of designing embedded systems dedicated to
applications that requires intensive parallel
computations. The most important design challenge
in such systems consists in solving the huge
architectural space solution and evaluating the
corresponding alternatives. MPSoC systems need
new development methodology to reduce the
complexity of design space exploration and to
increase the engineer’s productivity. A strong
advantage of using the MARTE profile for MPSoC
modelling is the particular concept of factorization,
both for hardware architecture and application.
With the semantic introduced by the ARRAYOL
model of computation [Bou07], factorization
provides a mechanism that expresses the
parallelism of the system in a compact way.

3. Hardware/Software RTOS Design

3.1. RTOS/MPSOC

Our MPSoC is most similar to Raw, as the
processors themselves are simple 5-stage RISCs,
without support for SIMD operations and wide
register files; however, our use of AVC buffers is
similar to the SRF/LRF and scratchpad memories,
but for processor-to-processor communication. For
the remainder of the paper we use the JPEG
compression algorithm as motivational example
and case study. Although JPEG compression is a
relatively simple algorithm, it is easy to understand,
and representative for streaming applications
[10,11]. This paper advocates the instantiation of
application-specific double buffers between
adjacent cores in MPSoC in order to enhance
memory system performance for stream programs.
We refer to each double buffer as a single
Architecturally Visible Communication (AVC)
buffer. AVC buffers can be viewed as a scratchpad
memory that is shared between two cores

3.2. Hardware RTOS components

Our solution is provided in the form of an
intellectual property (IP) hardware unit which we
call the SoC Lock Cache (SoCLC). The SoCLC
provides elective lock hand-o® by reducing on-
chip memory trace and improving performance in
terms of lock latency, lock delay and bandwidth
consumption. In our methodology, lock variables
are accessed via SoCLC hardware. The SoCLC
consists of one-bit registers to store lock variables
and associated control logic to electively
implement the lock hand-o® via interrupt
generation, which eliminates busy-wait problems.
In this way, the SoCLC eliminates the use of the
main memory bus for unnecessary spinning and
thus enables the memory bandwidth to be available

for other useful work [12,13]. The SoCLC has been
shown to achieve speedups of 55% and 27% in
realistic examples when compared to the traditional
spin-lock mechanism at a very small (<13,000
gates) hardware cost [1], [2], [3]. However, it is
also desired to be able to customize/ configure and
parameterize (according to the customer
specifications) the SoCLC with the minimum
engineering effort possible in an automated
fashion. One approach to solve these demands can
be referred to as an IP-generator tool. In this
context, we present PARLAK, parameterized lock
cache generator, that generates a custom SoCLC
for an SoC including reconfigurable and/or custom
logic and multiple heterogeneous processors.

Fig. 5 Soc Architecture

3.3 SoCDMMU

In static memory management, the memory is
allocated (or assigned) at compile (or design) time.
Static memory management can be as simple as
allocating static arrays or as complex as
synthesizing memory structures and/or software
memory allocators suitable for certain type of
applications. In dynamic memory management,
memory is allocated at run-time. Dynamic memory
management uses memory efficiently when
compared to static memory management
techniques. However, dynamic memory
management can consume a great amount of a
program's execution time [41] {especially in
object-oriented applications [14,15]. Dynamic
memory management can be classified into two
categories: _ Manual memory management In
manual memory management, the programme has
direct control over when memory is allocated and
when it might be recycled. Usually this is either by
explicit calls to heap management functions (e.g.,
malloc ()/free () in the C language) or by language
constructs that stack (such as local variables).
Although manual memory management is easier
for programmers to understand and use, memory

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

36

management bugs are common when manual
memory management is used. _ Automatic memory
management Automatic memory management is a
service, either as a part of the language (e.g., Java
and Lisp) or as an extension, that automatically
deallocates memory that a program will not use
again. Automatic memory managers (often known
as garbage collectors) usually do their job by
recycling blocks that are unreachable from program
variables

4. Experimental framework

RTOS’s are broadly classified in to three types,
namely, the Hard Real Time RTOS, Firm Real
Time RTOS and Soft Real Time RTOS, which are
describes bellow.

Hard real-time: missing a deadline has
catastrophic results for the system;

Firm real-time: missing a deadline entails an
unacceptable quality reduction as a consequence

Soft real-time: deadlines may be missed and can be
recovered from. The reduction in system quality is
acceptable

4.1. Hard real time Operating System

Hard real-time is that a small high-priority real-
time kernel runs between the hardware and
standard Linux. The real-time tasks are executed by
this real-time kernel (run to completion) and
normal Linux processes are suspended during this
duration. The real-time scheduler of the real-time
kernel treats the standard Linux kernel as an idle
task, which when given a chance to run, executes
its own scheduler to schedule normal Linux
processes. But since the real-time kernel runs at a
higher priority, the normal Linux processes can at
any time be pre-empted by a real-time task.

4.2 Software Real Time Operating System
(SW-RTOS)

Soft real time means that only the precedence and
sequence for the task operations are defined,
interrupt latencies and context switching latencies
are small but there can be few deviations between
expected latencies of the tasks and observed time
constraints and a few deadline misses are accepted.
The pre-emption period for the soft real time task
in worst case may be about a few ms. Mobile
phone, digital cameras and orchestra playing robots
are examples of soft real time systems.

5. Experimental results

This section describes and analyses the obtained
results to get evidence of soft-errors consequences

in the case of a real-time application. Transient
faults may cause several malfunctions when the
real-time kernel's services are corrupted. These
malfunctions are classified as follows:

Effect less – no visible effect on system
functionality Exception trigger – the program
triggers some exception routine (e.g. illegal
instruction, division by zero, etc.);

• System crash – the system stops
functioning;

• Application failure – represents a class of
faults with visible consequences on the
application level. This class of faults can
be subdivided as:

• Incorrect output results – one or more
application tasks are able to provide
results, but they are different from the
expected ones;

• Real-time problem – one or more
application tasks do not respect their real-
time constraints;

• Task hang – system still works but one or
more application tasks stop functioning

5.1 Fault parameters generator

 Calculates when and where the fault will be
injected. FIM can inject faults in CPU registers,
cache memories or internal and external memories,
but in our experiments, faults consist of single bit-
flips only in the CPU registers while the main
services of the Micro C kernel are active.

5.2 Fault tracer

Collect the information about the currently
executed task. At each task execution, it saves into
a file the instants when the task starts and ends its
execution as well as the tasks’ output results,

5.3 Results analyzer

Uses information provided by the fault tracer
module in order to classify the fault consequences
µC/OS-II is a portable, ROM able, scalable,
preemptive, real-time deterministic multitasking
kernel for microprocessors, microcontrollers and
DSPs. Offering unprecedented ease-of-use, µC/OS-
II is delivered with complete 100% ANSI C source
code and in-depth documentation. µC/OS-II runs
on the largest number of processor architectures,
with ports available for download from the
Marcum Web site. µC/OS-II manages up to 250
application tasks. µC/OS-II includes: semaphores;
event flags; mutual-exclusion semaphores that
eliminate unbounded priority inversions; message
mailboxes and queues; task, time and timer

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

37

management; and fixed sized memory block
management. µC/OS-II’s footprint can be scaled
(between 5 Kbytes to 24 Kbytes) to only contain
the features required for a specific application. The
execution time for most services provided by
µC/OS-II is both constant and deterministic;
execution times do not depend on the number of
tasks running in the application. To assess the
MicroC kernel sensitivity to transient faults, we
performed several fault injection campaigns.

Faults were randomly injected in the CPU registers
during execution of MicroC services. Note that, we
did not consider the issue of injecting faults in the
MicroC services that are used only for system
initialization (e.g. the task creation service that is
used only when the application tasks are created).
The impact of soft-errors according to the different
groups of MicroC services is illustrated. The
category axis (X) illustrates the classes of fault
consequences, while the value axis (Y) shows their
respective occurrence frequency. The different
groups of MicroC services are depicted by a
column bar [9]. For instance, consequences of
faults that affect services belonging to the time
management group are illustrated by the column
bar with vertical lines pattern (the 4th column in
each class of fault consequences).

This section describes and analyses the obtained
results to get evidence of soft-errors consequences
in the case of a real-time application. Transient
faults may cause several malfunctions when the
real-time kernel's services are corrupted.

Fig. 6 Effect of Soft-Error in SW-RTOS

Fig. 7 Effect of Soft-Error in HW/SW-RTOS

• Process Hanging (system continue its working but
some processes stop their operations).

• Application Exception: one or more application
tasks trigger some exception routine (e.g. illegal
instruction, division by zero and etc.).

• System crash - the system stops functioning. Fault
Injection Results to evaluate eCos (SW-RTOS) and
their proposed HW/SW-RTOS assessing the
reliability and different vulnerability factor (VF)
for each of OS services, we performed following
fault injection rules:

I. During execution of (SW-RTOS) and their
proposed HW/SW-RTOS services, faults were
randomly generated by Fault Injection module then
injected into the CPU registers.

II. Operating System Services like task creation and
[16] task termination are safe to fault injection.
During these services Fault Injection module is
idle. Fault Injection module will be activated using
signal from HW/SW-RTOS by mechanism of data-
exchanging while services are in progress.

The impact of soft-errors according to the different
services which are provided by eCos (SW-RTOS)
and HW/SW-RTOS based on eCos as illustrated
above. The X axes in these Fig it illustrate the
classes of fault consequences that were specified
before, while the value axis (Y) shows their
frequency of occurrence. The different groups
services related to eCos (SW-RTOS) and
HW/SWRTOS are depicted by a column bar. For
instance, consequences of faults that affect services
belonging to the synchronization group are
illustrated by orange color. On average 42.4% of
faults have no visible effects on the system
behaviour in SW-RTOS in comparison with 57.8%
of fault have no effect in HW/SW-RTOS.
Application failure rate SW-RTOS consist of
21.2% of total failure rate but in HW/SW-RTOS
this fraction [17] improves to 16.6%. Regarding to

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12 Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

38

system crashes we can see a 15% improvement in
robustness due to soft-error. A remarkable feature
of their results that is apparent from that all
services provided by HW/SWRTOS are more
robust than the same services provided by Services
related to both synchronization and time
managements are considerably improved as shown
in Fig. These improvements can be justified by
dedicated hardware synchronization part of our
HW/SW-RTOS.

6. Conclusion

Nowadays, safety-critical applications are often
based on real-time operating systems. These
systems are subject to faults that affect both the
correctness of logical results and the timing of tasks
response. In this paper, we reported a detailed
analysis of soft-errors impact on the key services of
MicroC, taking into account the application timing
constraints. Our results show that soft-errors
occurring in a real time operating system’s kernel
have a major impact on the system’s behaviour.
Moreover, it was found that all groups of MicroC
services have the same sensitivity profile. Solutions
to the soft error problem will be the increasing set
of embedded applications in harsh environments,
which comprise critical infrastructure in today's
society. This is particularly true for to aircraft using
commodity microprocessors for control systems.

6. References
[1] Douglass, B. P. Doing hard time: Developing real-

time systems with UML, objects, frameworks, and
patterns. Addison-Wesley, 1999.

[2] D. Mossé, R. Melhelm, S. Ghosh, “A non-pre-

emptive real-time scheduler with recovery from
transient faults and its implementation” IEEE
Transactions on Software Engineering, Vol. 29, No.
8, August 2003, pp 752-767

[3] J.-C. Fabre, F. Salles, M. Rodriguez, J. Arlat,

“Assessment of COTS Microkernel’s by fault
injection”, Dependable Computing for Critical
Applications 7, San- Jose, California, USA, 6-8
January 1999, pp.25-44

[4] J. Arlat, J.-C. Fabre, M. Rodriguez, “Dependability of

COTS microkernel-based systems”, IEEE
Transactions on Computers Volume 51, No 2, Feb.
2002, pp. 138 – 163 [5] W.-L Kao, D Tang, R.K.
Iyer, “Study of fault propagation using fault injection
in the UNIX system”, 2nd Test Symp. 16-18 Nov.,
1993, pp. 38-43

[5] V.Narayanan and Yuan Xie, .Reliability concerns in

embedded system designs,. IEEE Computer
magazine, pp. 106.108, January, 2006.

[6] Hisashige Ando, Yuuji Yoshida, Aiichiro Inoue,

Itsumi Sugiyama, Takeo Asakawa, Kuniki Morita, in

Design Automation Conference, New York, NY,
USA, 2003, pp. 702.705, ACM Press.

[7] Y.C. Yeh, .Triple-triple redundant 777 primary light

computer,. in 1996IEEE Aerospace Applications
Conference. Proceedings, 1996, vol. 1, pp. 293.307.

[8] Y. C. (Bob) Yeh, .Design considerations in boeing

777 wwire-by-wire computers, .in IEEE International
High-Assurance Systems Engineering Symposium,
1998, p. 64.

[9] Joel R. Sklaroff, .Redundancy management technique

for space shuttle computers,. IBM Journal of
Research and Development, vol. 20, no. 1, pp. 20.28,
1976

[10] P. L. Murray, “Re-Programmable FPGAs in Space

Environments”.

[11] IEEE Standard Test Access Port and Boundary Scan

Architecture (IEEE Std 1149.1), IEEE Std. Board,
2001. [12] J. H. Lala; R. E. Harper, “Architectural
principles for safety-critical real-time applications,”
Proceedings of the IEEE, Vol. 82, No. 1, pp. 25-40,
January 1994

[12] J.W.S. Liu,W.-K. Shih, K.-J. Lin, R. Bettati, J.-Y.

Chung, “Imprecise Computations”, Proceedings of
the IEEE, Vol.82, No.1, Jan. 1994, pp.83-93

[13] P. Mejia-Alvarez, D. Mossé, “A responsiveness

approach for scheduling fault-recovery in real-time
systems”, 5th Real-Time Technology and
Applications Symposium, 2-4 June 1999, pp.4-13

[14] M. Rodriguez, A. Albinet, J. Arlat, “MAFALDA-

RT: a tool for dependability assessment of real-time
systems”, International Conference on Dependable
Systems and Networks, USA, 23-26 June 2002, pp.
267 – 272

[15] B. Nicolescu, N. Ignat, Y. Savaria, G. Nicolescu,

“Sensitivity of Real-Time Operating Systems to
Transient Faults: A case study for MicroC kernel”,
IEEE Radiation and its Effects on Components and
Systems, Cap de Agde, France, Sept. 19-23, 2005

[16] Ph. Shirvani, R. Saxena, E.J. McCluskey, “Software

implemented EDAC protection against SEUs”, IEEE
Transaction on Reliability, Vol. 49, No. 3, Sept.
2000, pp. 273-284

[17] V. Izosimov, P. Pop, P. Eles, Z. Peng, “Design

optimization of time- and cost-constrained fault-
tolerant distributed embedded systems”, Design,
Automation and Test in Europe, Munich, Germany,
7-11 Mars 2005, pp. 864-869

