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Abstract 

This paper investigates the sensitivity of real-time 
systems running applications under operating systems 
that are subject to soft-errors. A procedure for 
characterizing the soft error susceptibility of nodes in a 
logic circuit, and a heuristic procedure for selecting the 
set of nodes for partial duplication are described. Third, 
the correctness of embedded systems is currently 
jeopardized by soft errors that may render control 
systems inoperable. In general, soft errors are 
increasingly a problem due to smaller fabrication sizes 
and deployment in harsh environments. A full set of 
experimental results demonstrate the cost-effective 
tradeoffs that can be achieved. First, architects must 
understand the impact of soft errors on their designs. 
Second, they must select judiciously from among 
available techniques to reduce this impact in order to 
meet their reliability targets with minimum overhead 
Two reduction heuristics, cluster sharing reduction and 
dominant value reduction, are used to reduce the soft 
error failure rate significantly with a fraction of the 
overhead required for conventional TMR. However, 
FPGA’s vulnerability to hard and soft errors is a major 
weakness to robust configurable system design. To 
eliminate the soft memory errors that are induced by 
cosmic rays, memory manufacturers must either produce 
designs that can resist cosmic ray effects or else invent 
mechanisms to detect and correct the errors. 
Keywords: Real-Time OS, soft-error, Embedded, 
configurable operating system. 

1. INTRODUCTION 

A real-time operating system (RTOS) is an 
operating system that supports and guarantees 
timely responses to external and internal events of 
real-time systems An RTOS monitors, responds to, 
and controls an external environment, which is 

connected to the computer system through sensors, 
actuators, or other input-output (I/O) devices. In a 
real-time system in general and an RTOS in 
particular, the correctness of system behaviours 
depends not only on the logical results of 
computation but also on the time point at which the 
results are obtained. Real-time systems can be 
divided into hard and soft real-time systems. In the 
former, a failure to meet timing constraints will be 
of serious consequences, while in the latter [1], a 
timing failure may not significantly affect the 
functioning of the system. A real-time system is 
one whose correctness involves both the logical 
correctness of outputs and their timeliness.  It must 
satisfy response-time constraints or risk severe 
consequences including failure. Real-time systems 
are classified as hard, firm or soft systems. In hard 
real-time systems, failure to meet response-time 
constraints leads to system failure.  
 
Firm real-time systems have hard deadlines, but 
where a certain low probability of missing a 
deadline can be tolerated. Systems in which 
performance is degraded but not destroyed by 
failure to meet response time constraints are called 
soft real-time systems. The intelligent time slice for 
round robin architecture for real time operating 
systems is a modified version of simple round robin 
architecture. Simple round robin architecture 
cannot be implemented in real time operating 
systems because of high context switch rate, larger 
waiting time and larger response time. Because of 
these performance criteria of the round robin 
architecture is not suitable to implement in real 
time systems. Real time operating systems have no 
hard deadlines for tasks but missing of deadlines in 
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real time operating systems will degrade the system 
performance. The proposed algorithm covers all the 
drawbacks of round robin architecture by reducing 
the number of context switches, reducing the 
waiting time, reducing the response time thereby 
increasing the system throughput. The clock-driven 
schedulers are those in which the scheduling points 
are determined by the interrupts received from a 
clock. In the event-driven ones, the scheduling 
points are defined by certain events which 
precludes clock interrupts. The hybrid ones use 
both clock interrupts as well as event occurrences 
to define their scheduling points.  
 
Event-driven schedulers:  
• Simple priority-based  
• Rate Monotonic Analysis (RMA)  
• Earliest Deadline First (EDF)  
 
We think that the use of a thread dedicated to the 
task scheduling makes the modelling of some 
scheduling policies easier, like modelling the Time 
Sharing algorithm for example. However, this 
approach increases the simulation duration since 
there is a context switch for each call to the 
scheduler and each return, what is not the case 
when we use procedure calls. In the case of using 
procedure [2] calls, the only thread switches are 
those of the tasks of the system we’re designing 
that occur. Generally speaking, a real-time system 
is composed of a set of tasks, each running a 
sequential algorithm, and communicating between 
them with high-level communication mechanisms.  
 
Synchronization: Based on events or Semaphore.  

Message passing: Based on message queues. 

Data sharing: Based on global data protected by 
mutual exclusion. 
 
After having selected the basic behaviours shared 
by traditional RTOS, we have implemented them in 
a nucleus exporting a few service classes. These 
generic services will then serve as a founding layer 
for developing each emulated RTOS API, 
according to their own flavour and semantics. In 
order for this layer to be architecture neutral, the 
needed support for hardware control and real-time 
capabilities will be obtained from underlying host 
software architecture, through a rather simple 
standardized interface [3]. Thus, porting the 
nucleus to a new real-time architecture will solely 
consist in implementing this low-level interface for 
the target platform.  
 

 
 
Fig.1 Basic Services Provided by a Real-Time Operating System 

Kernel 

1.1 Classification of RTOS 

RTOS’s are broadly classified into three types, 
namely, Hard Real Time RTOS, Firm Real Time 
RTOS and Soft Real Time RTOS as described 
below: 

Hard real-time: Degree of tolerance for missed 
deadlines is extremely small or zero. A missed 
deadline has catastrophic results for the system 
Firm real-time: missing a deadline might result in 
an unacceptable quality reduction 

Soft real-time: Dead lines may be missed and can 
be recovered from. Reduction in system quality is 
acceptable 

1.2 Features of RTOS 

The design of an RTOS is essentially a balance 
between providing a reasonably rich feature set for 
application development and deployment and, not 
sacrificing predictability and timeliness. A basic 
RTOS will be equipped with the following 
features: 

Multitasking and Preemptibility An RTOS must 
be multi-tasked and perceptible to support multiple 
tasks in real-time applications. The scheduler 
should be able to pre-empt any task in the system 
and allocate the resource to the task that needs it 
most even at peak load. 

Task Priority Pre-emption defines the capability to 
identify the task that needs a resource the most and 
allocates it the control to obtain the resource. In 
RTOS, such capability is achieved by assigning 
individual task with the appropriate priority level. 
Thus, it is important for RTOS to be equipped with 
this feature. 

Reliable and Sufficient Inter Task 
Communication Mechanism 
For multiple tasks to communicate in a timely 
manner and to ensure data integrity among each 
other, reliable and sufficient inter-task 
communication and synchronization mechanisms 
are required [4]. 

Priority Inheritance 

To allow applications with stringent priority 
requirements to be implemented, RTOS must have 
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a sufficient number of priority levels when using 
priority scheduling. 

 

Fig.2. General Architecture of RTOS 

An operating system generally consists of two 
parts: kernel space (kernel mode) and user space 
(user mode). Kernel is the smallest and central 
component of an operating system. Its services 
include managing memory and devices and also to 
provide an interface for software applications to 
use the resources. Additional services such as 
managing protection of programs and multitasking 
may be included depending on architecture of 
operating system. There are three broad categories 
of kernel models available 

1.3 Monolithic kernel 

A monolithic kernel is a kernel architecture where 
the entire kernel is run in kernel space in supervisor 
mode. In common with other architectures 
(microkernel, hybrid kernels), the kernel defines a 
high-level virtual interface over computer 
hardware, with a set of primitives or system calls to 
implement operating system services such as 
process management, concurrency, and memory 
management in one or more modules. 

1.4 Microkernel 

QNX Neutrino is based on real client/server 
architecture and consists of microkernel and 
optional cooperating processes. The microkernel 
implements only the core services, like threads, 
signals, message passing, synchronization, 
scheduling and timer services. Additional 
functionality is implemented in cooperative 
processes, which act as server processes and 
respond to the request of client processes [5]. In 
this case the application or any other functional 
modules act as a client. This technique is based on 
message oriented communication model. 
Communication model uses message bridges for 
message transfer to any node in the network. In that 
way the distributed character of QNX is deployed 
in its design. 

1.5 Prototype Exokernels 

We have implemented a prototype Exokernels 
system based on secure bindings, visible 
revocation, and abort protocols. It includes an 
Exokernels (Aegis) and a UN trusted library 
operating system (ExOS). We use this system to 
demonstrate several important properties of the 
Exokernels architecture: (1) Exokernels can be 
made efficient due to the limited number of simple 
primitives they must provide; (2) low-level secure 
multiplexing of hardware resources can be 
provided with low overhead; (3) traditional 
abstractions, such as VM and IPC, can be 
implemented efficiently at application level, where 
they can be easily extended, specialized, or 
replaced; and (4) applications can create special-
purpose implementations of abstractions, tailored to 
their functionality and performance needs. The 
concept is orthogonal to that of micro- vs. 
monolithic kernels by giving an application 
efficient control over hardware. It runs only 
services protecting the resources (i.e. tracking the 
ownership, guarding the usage, revoking access to 
resources, etc) by providing low-level interface for 
library operating systems (libOSes) and leaving the 
management to the application. 

1.6 RTOS kernel Service 

Multiprocessor real-time operating system (RTOS) 
kernel is designed as a software platform for 
System on Chip (SoC) applications and 
hardware/software co design research purposes. 
This multiprocessor RTOS kernel has the key 
features of an RTOS, such as multitasking 
capabilities, event-driven priority-based pre-
emptive scheduling; and interprocess 
communication and synchronization. The "kernel” 
of a real-time operating system ("RTOS”) provides 
an "abstraction layer” that hides from application 
software the hardware details of the processor (or 
set of processors) upon which the application 
software will run. In doing so, it supplies five main 
categories of basic services to application software. 
The most basic category of kernel services is task 
management. This set of services allows 
application software developers to design their 
[6,7] software as a number of separate "chunks” of 
software – each handling a distinct topic, a distinct 
goal, and perhaps its own real-time deadline. Each 
separates "chunk” of software is called a "task”. 
Services in this category include the ability to 
launch tasks and assign priorities to them. The 
main RTOS service in this category is the 
scheduling of tasks as the embedded system is in 
operation. The task scheduler controls the 
execution of application software tasks, and can 
make them run in a very timely and responsive 
fashion.  
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Fig. 3 RTOS Kernel Services 

 Embedded Configurable Operating System (eCos): 
eCos is provided as an open source runtime system 
supported by the GNU open source development 
tools. Developers have full and unfettered access to 
all aspects of the runtime system. No parts of it are 
proprietary or hidden, and you are at liberty to 
examine, add to, and modify the code as you deem 
necessary. These rights are granted to you and 
protected by the eCos license. It also grants you the 
right to freely develop and distribute applications 
based on eCos. We welcome all contributions back 
to eCos such as board ports, device drivers and 
other components, as this helps the growth and 
development of eCos, and is of benefit to the entire 
eCos community. One of the key technological 
innovations in eCos is the configuration system.  

The configuration system allows the application 
writer to impose their requirements on the run-time 
components, both in terms of their functionality 
and implementation, whereas traditionally the 
operating [8,9] system has constrained the 
application's own implementation. Essentially, this 
enables eCos developers to create their own 
application-specific operating system and makes 
eCos suitable for a wide range of embedded uses. 
Configuration also ensures that the resource 
footprint of eCos is minimized as all unnecessary 
functionality and features are removed. The 
configuration system also presents eCos as 
component architecture. This provides a 
standardized mechanism for component suppliers 
to extend the functionality of eCos and allows 
applications to be built from a wide set of optional 
configurable run-time components. Components 
can be provided from a variety of sources including 
the standard eCos release, commercial third party 
developers and open source contributors.  

2. Literature survey 

System-on-a-chip (SoC) technology is the 
packaging of all the necessary electronic circuits 
and parts for a "system" (such as a cell phone or 
digital camera) on a single integrated circuit ( IC ), 
generally known as a microchip . For example, a 
system-on-a-chip for a sound-detecting device 
might include an audio receiver, an analog-to-
digital converter ( ADC ), a microprocessor , 
necessary memory , and the input/output logic 
control for a user - all on a single microchip. 
System-on-a-chip technology is used in small, 
increasingly complex consumer electronic devices.  

Some such devices have more processing power 
and memory than a typical 10-year-old desktop 
computer. In the future, SoC-equipped nano robots 
of microscopic dimensions) might act as 
programmable antibodies to fend off previously 
incurable diseases. SoC video devices might be 
embedded in the brains of blind people, allowing 
them to see; SoC audio devices might allow deaf 
people to hear. Handheld computers with small 
whip antennas might someday be capable of 
browsing the Internet at megabit-per-second speeds 
from any point on the surface of the earth. 

We were motivated to measure the area, 
performance and power consumption gap between 
field-programmable gate arrays (FPGAs) and 
standard cell application-specific integrated circuits 
(ASICs) for the following reasons: In the early 
stages of system design, when system architects 
choose their implementation medium, they of- ten 
choose between FPGAs and ASICs. Such decisions 
are based on the differences in cost (which is 
related to area), performance and power 
consumption between these implementation media 
but to date there have been few attempts to quantify 
these differences. A system architect can use these 
measurements to access whether implementation in 
an FPGA is feasible.  

 
 

 

Fig 4.Multiprocessor System-on-a-Chip [MPSoC] 
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MPSoC architecture has become an unavoidable 
part of designing embedded systems dedicated to 
applications that requires intensive parallel 
computations. The most important design challenge 
in such systems consists in solving the huge 
architectural space solution and evaluating the 
corresponding alternatives. MPSoC systems need 
new development methodology to reduce the 
complexity of design space exploration and to 
increase the engineer’s productivity. A strong 
advantage of using the MARTE profile for MPSoC 
modelling is the particular concept of factorization, 
both for hardware architecture and application. 
With the semantic introduced by the ARRAYOL 
model of computation [Bou07], factorization 
provides a mechanism that expresses the 
parallelism of the system in a compact way. 
 
3. Hardware/Software RTOS Design 
 

3.1. RTOS/MPSOC 

Our MPSoC is most similar to Raw, as the 
processors themselves are simple 5-stage RISCs, 
without support for SIMD operations and wide 
register files; however, our use of AVC buffers is 
similar to the SRF/LRF and scratchpad memories, 
but for processor-to-processor communication. For 
the remainder of the paper we use the JPEG 
compression algorithm as motivational example 
and case study. Although JPEG compression is a 
relatively simple algorithm, it is easy to understand, 
and representative for streaming applications 
[10,11]. This paper advocates the instantiation of 
application-specific double buffers between 
adjacent cores in MPSoC in order to enhance 
memory system performance for stream programs. 
We refer to each double buffer as a single 
Architecturally Visible Communication (AVC) 
buffer. AVC buffers can be viewed as a scratchpad 
memory that is shared between two cores 

3.2. Hardware RTOS components 

Our solution is provided in the form of an 
intellectual property (IP) hardware unit which we 
call the SoC Lock Cache (SoCLC). The SoCLC 
provides elective lock hand-o® by reducing on-
chip memory trace and improving performance in 
terms of lock latency, lock delay and bandwidth 
consumption. In our methodology, lock variables 
are accessed via SoCLC hardware. The SoCLC 
consists of one-bit registers to store lock variables 
and associated control logic to electively 
implement the lock hand-o® via interrupt 
generation, which eliminates busy-wait problems. 
In this way, the SoCLC eliminates the use of the 
main memory bus for unnecessary spinning and 
thus enables the memory bandwidth to be available 

for other useful work [12,13]. The SoCLC has been 
shown to achieve speedups of 55% and 27% in 
realistic examples when compared to the traditional 
spin-lock mechanism at a very small (<13,000 
gates) hardware cost [1], [2], [3]. However, it is 
also desired to be able to customize/ configure and 
parameterize (according to the customer 
specifications) the SoCLC with the minimum 
engineering effort possible in an automated 
fashion. One approach to solve these demands can 
be referred to as an IP-generator tool. In this 
context, we present PARLAK, parameterized lock 
cache generator, that generates a custom SoCLC 
for an SoC including reconfigurable and/or custom 
logic and multiple heterogeneous processors.  
 

 

Fig. 5 Soc Architecture 

3.3 SoCDMMU 

In static memory management, the memory is 
allocated (or assigned) at compile (or design) time. 
Static memory management can be as simple as 
allocating static arrays or as complex as 
synthesizing memory structures and/or software 
memory allocators suitable for certain type of 
applications. In dynamic memory management, 
memory is allocated at run-time. Dynamic memory 
management uses memory efficiently when 
compared to static memory management 
techniques. However, dynamic memory 
management can consume a great amount of a 
program's execution time [41] {especially in 
object-oriented applications [14,15]. Dynamic 
memory management can be classified into two 
categories: _ Manual memory management In 
manual memory management, the programme has 
direct control over when memory is allocated and 
when it might be recycled. Usually this is either by 
explicit calls to heap management functions (e.g., 
malloc ()/free () in the C language) or by language 
constructs that stack (such as local variables). 
Although manual memory management is easier 
for programmers to understand and use, memory 
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management bugs are common when manual 
memory management is used. _ Automatic memory 
management Automatic memory management is a 
service, either as a part of the language (e.g., Java 
and Lisp) or as an extension, that automatically 
deallocates memory that a program will not use 
again. Automatic memory managers (often known 
as garbage collectors) usually do their job by 
recycling blocks that are unreachable from program 
variables 
 
4. Experimental framework 
 
RTOS’s are broadly classified in to three types, 
namely, the Hard Real Time RTOS, Firm Real 
Time RTOS and Soft Real Time RTOS, which are 
describes bellow.  

Hard real-time: missing a deadline has 
catastrophic results for the system; 

Firm real-time: missing a deadline entails an 
unacceptable quality reduction as a consequence 

Soft real-time: deadlines may be missed and can be 
recovered from. The reduction in system quality is 
acceptable 

4.1. Hard real time Operating System 

Hard real-time is that a small high-priority real-
time kernel runs between the hardware and 
standard Linux. The real-time tasks are executed by 
this real-time kernel (run to completion) and 
normal Linux processes are suspended during this 
duration. The real-time scheduler of the real-time 
kernel treats the standard Linux kernel as an idle 
task, which when given a chance to run, executes 
its own scheduler to schedule normal Linux 
processes. But since the real-time kernel runs at a 
higher priority, the normal Linux processes can at 
any time be pre-empted by a real-time task. 

4.2 Software Real Time Operating System 
(SW-RTOS) 

Soft real time means that only the precedence and 
sequence for the task operations are defined, 
interrupt latencies and context switching latencies 
are small but there can be few deviations between 
expected latencies of the tasks and observed time 
constraints and a few deadline misses are accepted. 
The pre-emption period for the soft real time task 
in worst case may be about a few ms. Mobile 
phone, digital cameras and orchestra playing robots 
are examples of soft real time systems.  

5. Experimental results 

This section describes and analyses the obtained 
results to get evidence of soft-errors consequences 

in the case of a real-time application. Transient 
faults may cause several malfunctions when the 
real-time kernel's services are corrupted. These 
malfunctions are classified as follows: 
 
Effect less – no visible effect on system 
functionality Exception trigger – the program 
triggers some exception routine (e.g. illegal 
instruction, division by zero, etc.); 
 

• System crash – the system stops 
functioning; 

• Application failure – represents a class of 
faults with visible consequences on the 
application level. This class of faults can 
be subdivided as:  

• Incorrect output results – one or more 
application tasks are able to provide 
results, but they are different from the 
expected ones;  

• Real-time problem – one or more 
application tasks do not respect their real-
time constraints;  

•  Task hang – system still works but one or 
more application tasks stop functioning 

5.1 Fault parameters generator  

 Calculates when and where the fault will be 
injected. FIM can inject faults in CPU registers, 
cache memories or internal and external memories, 
but in our experiments, faults consist of single bit-
flips only in the CPU registers while the main 
services of the Micro C kernel are active.  
 

5.2 Fault tracer  

Collect the information about the currently 
executed task. At each task execution, it saves into 
a file the instants when the task starts and ends its 
execution as well as the tasks’ output results,  

5.3 Results analyzer 

Uses information provided by the fault tracer 
module in order to classify the fault consequences 
µC/OS-II is a portable, ROM able, scalable, 
preemptive, real-time deterministic multitasking 
kernel for microprocessors, microcontrollers and 
DSPs. Offering unprecedented ease-of-use, µC/OS-
II is delivered with complete 100% ANSI C source 
code and in-depth documentation. µC/OS-II runs 
on the largest number of processor architectures, 
with ports available for download from the 
Marcum Web site. µC/OS-II manages up to 250 
application tasks. µC/OS-II includes: semaphores; 
event flags; mutual-exclusion semaphores that 
eliminate unbounded priority inversions; message 
mailboxes and queues; task, time and timer 
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management; and fixed sized memory block 
management. µC/OS-II’s footprint can be scaled 
(between 5 Kbytes to 24 Kbytes) to only contain 
the features required for a specific application. The 
execution time for most services provided by 
µC/OS-II is both constant and deterministic; 
execution times do not depend on the number of 
tasks running in the application. To assess the 
MicroC kernel sensitivity to transient faults, we 
performed several fault injection campaigns.  
 
Faults were randomly injected in the CPU registers 
during execution of MicroC services. Note that, we 
did not consider the issue of injecting faults in the 
MicroC services that are used only for system 
initialization (e.g. the task creation service that is 
used only when the application tasks are created). 
The impact of soft-errors according to the different 
groups of MicroC services is illustrated. The 
category axis (X) illustrates the classes of fault 
consequences, while the value axis (Y) shows their 
respective occurrence frequency. The different 
groups of MicroC services are depicted by a 
column bar [9]. For instance, consequences of 
faults that affect services belonging to the time 
management group are illustrated by the column 
bar with vertical lines pattern (the 4th column in 
each class of fault consequences). 
 
This section describes and analyses the obtained 
results to get evidence of soft-errors consequences 
in the case of a real-time application. Transient 
faults may cause several malfunctions when the 
real-time kernel's services are corrupted.  
 

 
 

Fig. 6 Effect of Soft-Error in SW-RTOS 
 

 
 
 

Fig. 7 Effect of Soft-Error in HW/SW-RTOS 
 
• Process Hanging (system continue its working but 
some processes stop their operations).  

• Application Exception: one or more application 
tasks trigger some exception routine (e.g. illegal 
instruction, division by zero and etc.).  

• System crash - the system stops functioning. Fault 
Injection Results to evaluate eCos (SW-RTOS) and 
their proposed HW/SW-RTOS assessing the 
reliability and different vulnerability factor (VF) 
for each of OS services, we performed following 
fault injection rules:  

I. During execution of (SW-RTOS) and their 
proposed HW/SW-RTOS services, faults were 
randomly generated by Fault Injection module then 
injected into the CPU registers.  
 
II. Operating System Services like task creation and 
[16] task termination are safe to fault injection. 
During these services Fault Injection module is 
idle. Fault Injection module will be activated using 
signal from HW/SW-RTOS by mechanism of data-
exchanging while services are in progress.  
 
 
The impact of soft-errors according to the different 
services which are provided by eCos (SW-RTOS) 
and HW/SW-RTOS based on eCos as illustrated 
above. The X axes in these Fig it illustrate the 
classes of fault consequences that were specified 
before, while the value axis (Y) shows their 
frequency of occurrence. The different groups 
services related to eCos (SW-RTOS) and 
HW/SWRTOS are depicted by a column bar. For 
instance, consequences of faults that affect services 
belonging to the synchronization group are 
illustrated by orange color. On average 42.4% of 
faults have no visible effects on the system 
behaviour in SW-RTOS in comparison with 57.8% 
of fault have no effect in HW/SW-RTOS. 
Application failure rate SW-RTOS consist of 
21.2% of total failure rate but in HW/SW-RTOS 
this fraction [17] improves to 16.6%. Regarding to 
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system crashes we can see a 15% improvement in 
robustness due to soft-error. A remarkable feature 
of their results that is apparent from that all 
services provided by HW/SWRTOS are more 
robust than the same services provided by Services 
related to both synchronization and time 
managements are considerably improved as shown 
in Fig. These improvements can be justified by 
dedicated hardware synchronization part of our 
HW/SW-RTOS. 

6. Conclusion  

Nowadays, safety-critical applications are often 
based on real-time operating systems. These 
systems are subject to faults that affect both the 
correctness of logical results and the timing of tasks 
response. In this paper, we reported a detailed 
analysis of soft-errors impact on the key services of 
MicroC, taking into account the application timing 
constraints. Our results show that soft-errors 
occurring in a real time operating system’s kernel 
have a major impact on the system’s behaviour. 
Moreover, it was found that all groups of MicroC 
services have the same sensitivity profile. Solutions 
to the soft error problem will be the increasing set 
of embedded applications in harsh environments, 
which comprise critical infrastructure in today's 
society. This is particularly true for to aircraft using 
commodity microprocessors for control systems. 
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