
IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

119

Specification Representation and Test Case Reduction by
Analyzing the Interaction Patterns in System Model

Ashish Kumari1, Dr. Rahul Rishi2

1M.Tech (Scholar), Computer Science & Engineering,
Shekhawati Engineering College, Jhunjhunu, Rajasthan

simplyaashi@gmail.com

2Professor, University Institute of Engineering & Technology,
Maharshi Dayanand University, Rohtak, Haryana

rahulrishi@rediffmail.com

Abstract
Extended Finite State Machine uses the formal description
language to model the requirement specification of the
system. The system models are frequently changed because
of the specification changes. We can show the changes in
specification by changing the model represented using
finite state machine. To test the modified parts of the model
the selective test generation techniques are used. However,
the regression test suits still may be very large according to
the size. In this paper, we have discussed the method which
define the test suits reduction and the requirement
specification that used for testing the main system after the
modifications in the requirements and implementation.
Extended finite state machine uses the state transition
diagram for representing the requirement specification. It
shows how system changes states and action and variable
used during each transition. After that data dependency and
control dependency are find out among the transitions of
state transition diagram. After these dependencies we can
find out the affecting and affected portion in the system
introduced by the modification. The main condition is: “If
two test cases generate same affecting and affected pattern,
it means it is enough to implement only one test case rather
than two.” So using this approach we can substantially
reduce the size of original test suite.
Keywords: Interaction Patterns, EFSM
dependencies, Data dependencies.

1. Introduction

Regression testing is a necessary though expensive
maintenance activity that attempts to validate
modified software and ensure that modifications are
not only correct but also have not inadvertently
affected the software so that portions that used to
work no longer work correctly. The simplest
regression testing strategy, retest all, tends to rerun
all of the test cases in the original test suite on a
modified version, and is therefore very time-
consuming and expensive. An alternative, selective
retest chooses only those tests that are associated
with the modified portions. In either case, it is
necessary to generate some new tests to cover

untested modified portions of the system [3]. In this
paper, we present a novel approach of specification
representation and EFSM based regression test
reduction that uses l dependence analysis to reduce a
given regression test suite. The approach
automatically identifies the difference between the
original and modified EFSM systems by identifying a
set of elementary modifications [9]: elementary
addition of a transition and elementary deletion of a
transition. For each elementary modification,
regression test reduction strategies that use EFSM
dependence analysis are used to reduce the regression
test suite by eliminating repetitive tests. Our initial
experience shows that this approach may
significantly reduce the size of regression test suites.

The paper is organized as following: Section 2
provides an overview of the Requirement
specification representation using EFSM, Section 3
presents an approach of EFSM based regression test
generation and implementation of the approach is
also given, Section 4 introduces EFSM dependencies,
and Section 5 presents an approach of EFSM based
regression test suite reduction based on dependence
analysis. In Conclusions future research is discussed.

2. Requirement-specification
representation

In this section, we provide an overview of
requirement-specification representation using EFSM
models. EFSM is a very popular technique for
modeling state-based systems like computer
communications, industrial control systems, etc.
EFSM consists of states (including an initial state and
an exit state) and transitions between states. A
transition is triggered by an event provided that the
enabling condition is satisfied. When a transition is
traversed, certain action(s) may be performed [1,10].
An action may manipulate variables, read input or
produce output. An enabling condition is a Boolean

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

120

predicate that may use EFSM variables and must
evaluate to TRUE in order for the transition to be
taken. EFSM models are graphically represented as
graphs where states are represented as nodes and
transitions as directed arcs. The following elements
are associated with each transition: an event, a
condition, and a sequence of actions. Figure1 shows a
graphical representation of an EFSM transition [1].

Figure 1 EFSM Transition

A simplified EFSM model of an ATM system is
shown in Figure 2 [11]. This ATM system
supports three types of transactions (withdrawal,
deposit, and balance inquiry) represented by
transitions. Before ATM transactions can be
performed, user must enter a valid PIN that is
matched against the PIN stored in the ATM card.
A user is allowed a maximum of three attempts
to enter the valid PIN. For example, the
transition labeled T4 is triggered when the system
is in state S1, event PIN is received, the value of
parameter p of the event equals to variable pin.
When the transition is triggered, the menu is
displayed [10, 12].

Figure 2 EFSM Model of the ATM System

We assume that this ATM system model was created
from a set of individual system requirements. In this
EFSM model, the requirement labeling is provided

(either through an automated model generation or
manually). Since individual requirements are, in most
cases, represented as individual transitions in the

Se

Event (parameters)
[Condition]/Action

Sb

T5

Withdraw (w)/

b=b-w

Start S1 S2

S3

T2

PIN(p)

{(p!=pin) and (attempts<3)}

Display error:

attempts = attempts +1,Prompt
for PIN

T1

Receipt, Print b:

Display menu

T7

T8

Exit/Eject Card

Exit

 Deposit (d)/

b=b+d

Card (pin,b)

Prompt for PIN

attempts =0

T6

PIN(p)

{(p!=pin) and (attempts= =3)}/

Display error:

Eject Card

T4

PIN(p)

(p==pin)/

Display
menu

T3

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

121

EFSM model, in this paper, we use transition and
individual requirement interchangeably.

3. Requirement specification based test
case generation
An EFSM system model becomes an input to EFSM
test generator. The generator may support a variety of
the existing EFSM model-based test generation
strategies [8, 20]: state coverage, path coverage,
constrained path coverage, etc. Depending on the
selected testing strategy, the test generator
automatically generates a set of EFSM paths (from an
initial state to the final state) that satisfies the selected
strategy. For each path, appropriate test values
(inputs) that lead to the traversal of the selected path
are identified. Clearly, a test case consists of a
sequence of events (transitions) with appropriate
input values. The following is an example of a test
case for the ATM system shown in Figure 2:

Card (1234, 100.00); PIN (1234);
Withdrawal (60); Continue; Deposit
(70); Continue; Exit.

In this paper, we concentrate mainly on generating
tests as sequences of transitions (events) and we do
not consider input values. Therefore, the test case
shown above is represented as the following
sequence of transitions: T1, T4, T6, T8, T5, T8, T9.

Most of the existing EFSM model-based test
generation strategies are mainly used to test the
whole system, referred to as system testing. This type
of testing is expensive because of a large number of
generated test cases. In the earlier stages of a testing
process, the frequently used type of testing is
selective testing [1,11].

In selective testing, testers want to partially test the
system with respect to a set of selected requirements
(referred to as requirement-based selective testing).
This type of testing is used to test selected system
functionality represented by a requirement(s). In
requirement-based selective testing, requirement
information is first mapped to corresponding
transitions of the EFSM model [10]. A tester selects a
requirement(s) that should be tested. Based on this
information, the test generator determines which
transition(s) of the EFSM model corresponds to the
selected individual requirement(s). Several selective
testing strategies may be used: state coverage,
transition coverage, path coverage, and constrained
path coverage.

For example, consider the EFSM system model
shown in Figure 2. A tester chooses to generate a
system test suite using a system constrained path
coverage testing strategy. This strategy requires that
every path in the model be traversed at least once

where each path can contain at most n “occurrences”
of the same transition (any transition can be traversed
at most n times in a path). The resulting system test
suite contains 64 tests for n = 3; and 160 tests for n =
4.

3.1 Algorithm for test case generation:
The algorithm define below based on depth first
search and gives details to find out the possible path
or test cases from a finite state machine represented
using state transition diagram. The algorithm path
generate is invoked on the start state of the finite state
machine.

Transition of the ATM state transition diagram
contains the following details:

Struct transition

{

int no;

int source;

int dest;

int no_of_variable_used;

char *action[no_of_action];

char *events[no_of _events];

char *var[no_of _var_used];

int accurance;

}

Path_generation(struct transition T1)

{

If (T1.occurance<n)

Insert this particular transition T1 into
the stack.

T1.occurance+=1; /* Transition would be
traversed up to n times in
path when there
is cycle to avoid infinite
no. of possible test cases.
*/

If (T1.dest==exit_state)

Display the contents of the stack array
from 0 to top of the stack.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

122

/* which consist of the
sequence of transition
traversed in executing this
particular path or test
case.*/

Else

 Repeat the step for all adjacent
transition T to transition T1.

/* adjacent transitions are those whose source state is
same as destination state of T1.*/

Path generation (T)

 /*call path generation for the next adjacent
transition to T1 */

Pop (); /* pop out the last transition from the stack.
This algorithm is based on depth first search so after
finding out the one path the. We backtrack to second
last node of the path and find out another node that is
adjacent. */

}

4. EFSM dependencies

Before we present the approach of regression test
suite reduction using EFSM dependence analysis, we
introduce dependencies that may exist in the EFSM
model. We define two types of dependencies between
transitions ("active" elements of an EFSM model):
data dependence and control dependence. Note that
states are "passive" elements of the EFSM model.
These dependencies capture the notion of potential
"interactions" between transitions in the model. Let T
be a transition. The following notation related to
transition T is introduced [1, 11]:

Sh(T) is a state from which T is outgoing. So(T) is a
state to which T is incoming. .U (T) is a set of
variables used in transition T. i.e. .variables used in a
condition or an action of T. D (T) is a set of variables
defined by transition T .i.e.. Variables defined by an
action or defined in an event of T and not redefined
by the action of T. C(T) is an enabling condition
associated with transition T. E(T) is an event
associated with transition T.

Data dependence

Data dependence captures the notion that one
transition defines a value to a variable and another
transition may potentially use this value. More
formally, there exists data dependence between
transitions Ti and Tk if there exists a variable v such
that: (I) v E D(Ti), (2) v E U(Tk), and (3) there exists

a path (transition sequence) in the EFSM model from
Ti to Tk along which v is not modified; such a path is
referred to as definition-clear path. For example,
there exists data dependence between transitions T I
and T 5 because transition T I assigns a value to
variable b (in the event Card (pin, b), transition Ts
uses variable b (in action "b = b -w"), and there exists
a path (sequence of transitions TI, T4, T5) from TI to
T5 along which b is not modified.

Control dependence

Control dependence captures the notion that one node
in the control graph may affect the execution of other
node. Let Y and Z be two states (nodes) and T be an
outgoing transition (edge) from Y. State Z post-
dominates state Y iff Z is on every path from Y to the
exit state. State Z post dominates transition T iff Z is
on every path from Y to the exit state through
transition T. Transition Ti has control dependence on
transition T k. (transition T k is control dependent on
transition Ti) iff (1) state Sh(Tk) does not post-
dominate state Sh(T;), and (2) state Sh(Tk) post-
dominates transition Ti. For example, transition T4
has control dependence on transition Ts in the EFSM
model of Figure 2 because state S2 does not post
dominate state SI and state S2 post-dominates
transition T4.

Figure 3. ATM EFSM Dependencies graph.

Graph shows the data and control dependencies
among the transition of the ATM model. Node
represents transitions and edges represent the
dependencies among these transitions. For example

T3 T2

T4 T8

T5

T7

T6

T1

Data Dependency

Control
Dependency

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

123

there are data dependencies between T1 and T6 for
data variable balance because balance is initialized in
T1 and it is redefined in T6 and in b/w these there is
no modification in the value of the balance variable.
In graph I have not shown the dependencies on the
particular variable.

5. Regression test suite reduction

In this paper, we present a EFSM based regression
test suite reduction approach that uses EFSM graph
dependence analysis to reduce regression test suites.
The approach accepts as inputs: the original model,
the elementary modification, and a given regression
test suite. Now based on this elementary
modification, modified EFSM graph is created and
the modifications are marked using some special
symbol.

Figure 4 Modified ATM EFSM

Modified ATM EFSM contain on more transition T9
which shows the balance. So regression test suite
reduction is achieved based on two things.

5.1 Selective test reduction: only those test cases are
included in the selective test suite which traverses the
modification during the traversing of the selected test
case. Test cases which do not traverse the added
transition means they are already tested and no need
to be retested. For example Test case T1T2T2T2T3
does not include any new transition so there is no

need to retest this case and this is not included in the
selective test case suite.

5.2 Test case reduction using dependence analysis:
In this selective test suite would be the input for this
method. Here for every test case we find affecting
and affected interaction pattern.

I Affecting interaction pattern: This graph contain
those transitions which affect the newly added
transition.

PIN(p)

(p==pin)/

Display menu

T5

Withdraw (w)/

b=b-w

Start S1 S2

S3

T2

PIN(p)

{(p!=pin) and (attempts<3)}

Display error:

attempts = attempts +1,Prompt for PIN

T1

Continue, Print b:

Display menu

T7

T8

Exit/Eject Card

Exit

 Deposit (d)/

b=b+d

Card (pin,b)

Prompt for PIN

attempts =0

T6

PIN(p)

{(p!=pin) and (attempts= =3)}/

Display error:

Eject Card

Balance/

Display b T9

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

124

Following steps should be performed for finding out
affecting interaction pattern based on the control and
data dependencies.

1. We traverse each test case in the selective
test suit and create a graph of data
dependencies and control dependencies
which occur during the traversal of that
particular test case.

2. Now this graph is traversed in the backward
direction from the added transition and
creates a new graph which includes only the
traversed transition. Now this graph is the
interaction pattern for that particular test
case.

II Affected interaction pattern: This graph contains
that transition which may be affected by the newly
added transition.

Following steps should be performed for finding out
the affected interaction pattern based on the control
and data dependencies.

1. We traverse each test case in the selective
test suit and create a graph of data
dependencies and control dependencies
which occur during the traversal of that
particular test case.

2. Now this graph is traversed in the forward
direction from the added transition and
creates a new graph which includes only the
traversed transition. Now this graph is the
interaction pattern for that particular test
case.

Now those test cases whose both affecting and
affected interaction pattern is same, we can emit one
of the test cases in retesting. So only one of the test
cases would be included in the test reduction test
suite.

For example:

Test case#1. T1 T2 T2 T4 T5 T7 T6 T7 T9 T7 T8.

Test case#2 T1 T2 T4 T5 T7 T6 T7 T9 T7 T8.

Now the interaction pattern for the both the test cases
are same. So we include only one of them in
reduction test suite.

6. Conclusion

This paper proposed a approach using which we can
represent the requirement specification and algorithm
which is used to generate the possible test cases and a
test reduction approach which reduce the test case
suite based on the dependence analysis among the
transition. Data dependencies and control

dependencies are described in a very simple manner
in the paper which forms the basis for test case
reduction and generating the interaction pattern.
Implementation of the said approach is under
development in C language. In future I try to find the
approach which can also consider the side effect of
the added transition and to investigate the present
approach on some other state based system and
analyze the efficiency of the said approach.

7. References

1. Korel, B., Tahat, L.H., and Vaysburg, B.,
“Model-based regression test reduction
using dependence analysis”, In Proc. of
ICSM’02 (Montréal, Canada, October 3-6,
2002). IEEE Computer Society Press,
Washington, DC, 2002, 214-223.

2. Tahat, L., Vaysburg, B., Korel, B., Bader,
A.,"Requirement-Based Automated Black-
Box Test Generation," Proceedings of the
25th Annual IEEE International Computer
Software and Applications Conference
(COMPSAC), Chicago, IL, pp. 489-495,
2001.

3. Lihua Xu and debra Richardson,”
Generating regression tests using model
checking” Computer Software and
Applications Conference,pp. 336 - 341
vol.1 , 2004

4. Rothermel, G., Harrold, M., "A Safe,
Efficient Regression Test Selection
Technique," ACM Transactions on Software
Engineering and Methodology, 6(2), pp.
173-210,1997.

5. Savage, P., Waiters, S., Stephenson, M.,
"Automated Test Methodology for
Operational Flight Programs," Proceedings
of IEEE Aerospace Conference, vol. 4, pp.
293-305, 1997.

6. Sherlund, B., Korel, B., Modification
Oriented Software Testing," Proceedings of
Quality Week, pp. 1-17, 1991.

7. Tahat, L., Vaysburg, B., Korel, B., Bader,
A., "Requirement-Based Automated Black-
Box Test Generation," Proceedings of the
25th Annual IEEE International Computer
Software and Applications Conference
(COMPSAC), Chicago, IL, pp. 489-495,
2001.

8. Tsai, W., Bai, X., Paul, R., Yu, L.,
"Scenario-Based Functional Regression
Testing," Proceedings of the 25'th Annual
IEEE International Computer Software and
Applications Conference (COMPSAC),
Chicago, IL, pp. 496-501, 2001.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 12, Issue 01, January 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

125

9. Vaysburg, B., Tahat, L., Korel, B., Bader,
A., " Automating Test Case Generation from
SDL Specifications," Proceedings of the
18th International Conference on Testing
Computer Software (TCS),

10. Vaysburg, B., Tahat, L., Korel, B.,
"Dependence Analysis in Reduction of
Requirement Based Test Suites," to appear
in Proceedings of IEEE international
Symposium on Software Testing and
Analysis (ISSTA), Rome, Italy,2002.

11. Ynaping Chen, Robert L. Probert and
Hasan Ural , “Regression Test Reduction
Using Extended Dependence Analysis” in
SOQUA’07 , September 3-4 2007, ACM
Transaction , Dubrovnik , Croatia , 2007.

12. Luay Tahat, Bogdan Korel, Mark
Harman, Hasan Ural,” Regression test suite
prioritization using system models”, 2011.

