
IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

52

AwarenessAwarenessAwarenessAwareness ofofofof Open Source Open Source Open Source Open Source Software (Software (Software (Software (OSSOSSOSSOSS))))::::
Promises, Reality Promises, Reality Promises, Reality Promises, Reality and Futureand Futureand Futureand Future

Anil (Student of M.Tech.(CSE))1, Ashok kumar(Student of M.Tech.(CSE))2 , Vikas Chahar3 ,Nidhi Kandhil 4

1Bhiwani Institute of Technology, Bhiwani-127021, Haryana, India
anilverma.bits@gmail.com

2Bhiwani institute of technology and science, Bhiwani-127021, Haryana, India

ashokdhirana@gmail.com

3Asstt. Prof. Vaish Institute of Management & Technology, Rohtak

 4Research Scholar, Singhania University, jhunjhunu (Rajasthan)

Abstract
Open source is a development method for software that harnesses
the power of distributed peer review and transparency of process.
The Open Source Initiative Approved License trademark and
program creates a nexus of trust around which developers, users,
corporations and governments can organize open source
cooperation. The promise of open source is better quality, higher
reliability, more flexibility, lower cost, and an end to predatory
vendor lock-in.
Key-Words: Open-source software, freeware,
toolbox/toolkit for research/education, simulation,
computer science and engineering, education and training,
innovation and issues, code ownership

1. Introduction

Open source doesn't just mean access to the source code.
The distribution terms of open-source software must
comply with the following criteria:

I. Free Redistribution

The license shall not restrict any party from selling or
giving away the software as a component of an aggregate
software distribution containing programs from several
different sources. The license shall not require a royalty or
other fee for such sale.

II. Source Code

The program must include source code, and must allow
distribution in source code as well as compiled form.
Where some form of a product is not distributed with
source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable
reproduction cost preferably, downloading via the Internet
without charge. The source code must be the preferred
form in which a programmer would modify the program.
Deliberately obfuscated source code is not allowed.

Intermediate forms such as the output of a pre-processor or
translator are not allowed.

III. Derived Works

The license must allow modifications and derived works,
and must allow them to be distributed under the same
terms as the license of the original software.

IV. Integrity of the Author's Source Code

The license may restrict source-code from being
distributed in modified form only if the license allows the
distribution of "patch files" with the source code for the
purpose of modifying the program at build time. The
license must explicitly permit distribution of software built
from modified source code. The license may require
derived works to carry a different name or version number
from the original software.

V. No Discrimination Against Persons or Groups

The license must not discriminate against any person or
group of persons.

VI. No Discrimination Against Fields of
Endeavour

The license must not restrict anyone from making use of
the program in a specific field of endeavor. For example, it
may not restrict the program from being used in a
business, or from being used for genetic research.

VII. Distribution of License

The rights attached to the program must apply to all to
whom the program is redistributed without the need for
execution of an additional license by those parties.

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

53

VIII. License Must Not Be Specific to a Product

The rights attached to the program must not depend on the
program's being part of a particular software distribution.
If the program is extracted from that distribution and used
or distributed within the terms of the program's license, all
parties to whom the program is redistributed should have
the same rights as those that are granted in conjunction
with the original software distribution.

IX. License Must Not Restrict Other Software

The license must not place restrictions on other software
that is distributed along with the licensed software. For
example, the license must not insist that all other programs
distributed on the same medium must be open-source
software.

X. License Must Be Technology-Neutral

No provision of the license may be predicated on any
individual technology or style of interface.

Open source is a development method for software that
harnesses the power of distributed peer review and
transparency of process. The promise of open source is
better quality, higher reliability, more flexibility, lower
cost, and an end to predatory vendor lock-in. Starting in
the early 2000s, a number of companies began to publish a
portion of their source code to claim they were open
source, while keeping key parts closed. This led to the
development of the now widely used terms free open
source software and commercial open source software to
distinguish between truly open and hybrid forms of open
source.

The Open Source Initiative Approved License trademark
and program creates a nexus of trust around which
developers, users, corporations and governments can
organize open source cooperation. The open source
movement has inspired increased transparency and liberty
in other fields. The open-source concept has also been
applied to media other than computer programs.
The promise of open source is better quality, higher
reliability, more flexibility, lower cost, and an end to
predatory vendor lock-in. Subsequently, the new phrase
"open-source software" was born to describe the

environment that the new copyright, licensing, domain,
and consumer issues created.
Open source on the Internet began when the Internet was
just a message board, and progressed to more advanced
presentation and sharing forms like a Web site. There are
now many Web sites, organizations and businesses that
promote open source sharing of everything from computer
code to mechanics of improving a product, technique, or
medical advancement. The open source movement has
inspired increased transparency and liberty in other fields.
Often, open source is an expression where it simply means
that a system is available to all who wish to work on it. A
main principle and practice of open source software
development is peer production by bartering and
collaboration, with the end-product, source-material,
"blueprints," and documentation available at no cost to the
public. This is increasingly being applied in other fields of
endeavor, such as biotechnology.
Very similar to open standards, researchers with access to
Advanced Research Projects Agency Network
(ARPANET) used a process called Request for Comments
(RFCs) to develop telecommunication network protocols.
This collaborative process of the 1960s led to the birth of
the Internet in 1969.

2. Architecture of OSS

In spite of the hype and hysteria surrounding open source
software development, there is very little that can be said
of open source in general. Open source projects range in
scope from the miniscule, such as the thousands of non-
maintained code dumps left behind at the end of class
projects, dissertations, and failed commercial ventures, to
the truly international, with thousands of developers
collaborating, directly or indirectly, on a common
platform. One characteristic that is shared by the largest
and most successful open source projects, however, is a
software architecture designed to promote anarchic
collaboration through extensions while at the same time
preserving centralized control over the interfaces. This talk
features a survey of the state-of-the-practice in open
source development in regards to software architecture,
with particular emphasis on the modular extensibility
interfaces within several of the most successful projects,
including Apache httpd, Eclipse, Mozilla Firefox, Linux
kernel, and the World Wide Web (which few people
recognize as an open source project in itself). These
projects fall under the general category of collaborative
open source software development, which emphasizes
community aspects of software engineering in order to
compensate for the often-volunteer nature of core
developers and take advantage of the scalability obtainable
through Internet-based virtual organizations.

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

54

Open Source software development, which is figured as
nonlinear and self-organizing, from Closed Source, which
is represented as hierarchical and authoritarian. The Open
Source model has been characterized by some as
representing a libratory politics for the information age.
An aspect of the software mentioned is that they are used
by skilled users themselves – often developers. This is a
fundamentally different model to the typical ‘consumer’
model which shoves a shrink-wrapped product down the
‘luser’s throat and expects them to pay for every upgrade,
driven by features not stability. Of course, this improved
model is a direct result of free software’s for fundamental
freedoms, and not merely because the source is accessible.

 Flexibility

At the architectural level, experience shows that it is often
best to pick tried and trusted standards for interworking. If
that is done, then best-of breed solutions can be selected
for particular components within the architecture. Provided
that the solutions can interwork suitably, the business
should be able to avoid lock-in to a particular supplier and
over-dependency. This is notoriously hard to manage,
requiring a real act of will from management. What
happens most often is that a vendor will make a `feature
sale', emphasizing something which cannot be done
through the standard infrastructure. If they succeed then
the business can become dependent on that particular
solution and unable to choose alternatives at a later date.
Any astute vendor will attempt to do this, only vigilant
managers can avoid the lock-in that follows. Proprietary
data formats are a particularly good tool for vendors to
use. If they can establish a bridgehead, their competition
will not only have to provide competing functionality, but
also data conversion tools from a (typically)
undocumented or even protected format.

3. Impact Factors on OSS

THE FACTORS THAT IMPACT ON OSS

The success of OSS has been mostly attributed the
reliability, portability and scalability of the resulting
software [1-6]. In turn, these qualities are attributed to
three main issues, namely the fact that developers are
usually also users of the software, the public availability of
the source code, and the fact that developers are members
of a community of developers.

Personal Need

Open Source Software often originates from a personal
need [5, 6]. This approach to software offers some real
benefits in the design process. Since developers are users

of the software, they understand the requirements in a deep
way. As a result, the ambiguity that often characterizes the
identification of user needs or requests for improvement in
the traditional software development process is eliminated:
programmers know their own needs [7].

Open Inspection and Contributions

The personal needs attract the attention of other user-
developers and inspire them to contribute. In OSS, the
source code is open to inspection by and contributions
from any interested individual. Therefore, users can also
be developers. If they find bugs, they can fix them
themselves rather than having to wait for the developers to
do so; if a specialized feature is needed, it can be added,
even if it is not one that the developers feel is cost-
justified. As a result, OSS bugs can be fixed and features
evolved more quickly.

Developers as a Community Part

Developers are part of a community. The OSS community
represents a nexus of exchanges in which people report
bugs expecting that other members will fix them. Similarly
those who fix bugs expect other developers to contribute to
other parts of the project [8]. Reputation is another
important aspect — the community is in fact frequently
described as being based on peer recognition and in some
cases on a “cult of the personality”. In particular, peer
recognition is a value for the community that can
sometimes lead to employment opportunities or access to
venture capital [9]. In such an environment, developers
may be motivated to do the best work they can, rather than
anonymously finishing code so it can be shipped.

Commercial support

OSS with commercial support is relatively small. Luckily,
there are lots of free resources out there: mailing lists,
forums, wikis, and IRC (internet relay chat) channels, to
name a few. The support available through these free
resources is comparable to, and sometimes even better
than, traditional commercial support.

Hardware compatibility

Hardware compatibility is another crucial factor when
choosing a FOSS operating system. The system has to be
capable of supporting your computer's parts and the types
of devices in use. If you have a critically important
computer part or device, it's often simplest just to check
with the hardware maker for advice about which FOSS
operating systems are supported.

Software compatibility

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

55

Software compatibility will likely be an important issue if
you plan to use commercial software. As a general rule,
most FOSS software will work with most FOSS operating
systems. If there are particular programs you know in
advance you'll need, then you should verify that they'll
work with the operating system of your choice. One issue
that may be overlooked is which version of any particular
software application is installed on the operating system
"out of the box". Server FOSS operating systems tend to
come with older versions of applications, so if you prefer a
more recent version of a particular application you might
first have to uninstall the older version.
The main implication of the three characteristics described
above is that OSS software engineering processes have
evolved to develop software that meets developers’ needs
[10]. On the other hand, OSS, with its reliance on self-
interested developers, may be less well suited for
developing applications that address problems that
developers tend not to face. We see very good OSS tools
for software development and good end-user tools for
issues faced by developers (e.g., email, word processing),
for example, but would expect to see few OSS applications
for problems developers rarely face (e.g., accounting,
textual analysis).

4. Reliabilities of OSS Premises

Reliability mean the absence of defects which cause
incorrect operation, data loss or sudden failures, perhaps
what many people would mean when they use the term
`bug'. it's hard to point to that as good way of defining
what is a bug and what is a feature. Determining what
constitutes a bug is usually by agreement amongst the
developers and users of the software (an overlapping
community in many cases). Obvious failure to perform is
easily recognized as a bug, as is failure to conform to
appropriate published standards.
Security related failings (exploits or vulnerabilities) are
clearly bugs too. Each of these kinds of bugs is usually
addressed with speedy fixes wherever possible and Open
Source advocates will claim very rapid time-to-fix
characteristics for software. White-box and black-box
models are two approaches for predication of software
reliability.
The white-box models attempt to measure the quality of a
software system based on its structure that is normally
architected during the specification and design of the
product. Relationship of Software components and their
correlation are thus the focus for software reliability
measurement [1], [5], [22], [23]. In the black-box
approach, the entire software system is treated as a single
entity, thus ignoring software structures and components
interdependencies. These models tend to measure and
predict software quality in the later phases of software
development, such as testing or operation phase.

The models rely on the testing data collected over an
observed time period. Some popular examples are:
Yamada S-Shape, Littlewood-Verrall, Jelinski-Moranda,
MusaOkumoto, and Goel-Okumoto.
This study is concentrated on the black-box reliability
approach to measure and compare the reliability of the
selected OSS projects. Users of the software can choose
whether to use the unofficial fix or wait for an `official'
version. By `official' we mean a release blessed by the
software team itself or a trusted authority such as one of
the main distributors of Open Source packages. This
mechanism clearly works very well in practice.
Consequently much Open Source software becomes highly
robust at a surprisingly early stage of its development, and
mature Open Source products are setting new industry
standards for bulletproofness.Figure 2 A portion of a bug
report in XML at Bugzilla.

A. Black-Box Reliability Analysis

a) Bug-Gathering

A Java program portion of a bug report in XML
stored at Bugzilla is developed to gather the
relevant data from the XML format for further
data filtering and analysis.

b) Bug-Filtering

The duration for which the failure data is
collected for the five OSS projects are listed in
Table I

 Project name Start date End date

1 Firefox 3/1999 10/2006

2 Eclipse 10/2001 12/2007

3 Apache 2 03/2002 12/2008

4 ClamWin Free 03/2004 08/2008
Antivirus

5 MPlayer 09/2002 06/2006

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

56

c) Bug-Analysis.

In the bug-analysis step, the frequency of bugs in two
week periods is calculated. Therefore, the x-axis and y-
axis represent the biweekly time and the corresponding
bug frequency, respectively.The critical testing factors that
determines the reliabilities of open source software
premises:
1. System Environment
2. Emulator and Devices
3. Application Complexity

B. Quality Factors of OSS

Some interesting facts about open source quality, and in
particular mentioned that open source software has an
average defect density that is 50-150 times lower than
proprietary software. As it stands, this statement is
somewhat incorrect, and I would like to provide a small
clarification of the context and the real values:
• Average: That is mentioned by Michael is related to a

small number of projects, in particular the Linux
kernel, the Apache web server (and later the entire
LAMP stack), and a small number of additional,
“famous” projects. For all of these projects, the reality
is that the defect density is substantially lower than that
of comparable proprietary products. [4]

• Other than the software engineering community, some
results from companies working in the code defect
identification industry also published some results, like
Reasoning Inc. A Quantitative Analysis of TCP/IP
Implementations in Commercial Software and in the
Linux Kernel, and How Open Source and Commercial
Software Compare: Database Implementations in
Commercial Software and in MySQL. All results
confirm the much higher quality (in terms of defect per
line of code) of the academic research.

• Additional research identified a common pattern:
the initial quality of the source code is roughly the
same for proprietary and open source, but the defect
density decreases in a much faster way with open
source. So, it’s not the fact that OSS coders are on
average code wonders, but that the process itself
creates more opportunity for defect resolution on
average. As Succi et al. pointed out: “In terms of
defects, our analysis finds that the changing rate or the
functions modified as a percentage of the total
functions is higher in open-source projects than in
closed- source projects. This supports the hypothesis
that defects may be found and fixed more quickly in
open-source projects than in closed-source

<bug>

 <bug_id>366101</bug_id>

 <creation_ts>2007-01-05 16:41
PST</creation_ts>

 <short_desc>nsIFile.initWithPath should
accept "c:/mozilla" as native path
(forward slashes should be treated as
backslashes)

</short_desc>

 <delta_ts>2007-01-05 16:57:22
PST</delta_ts>

<reporter_accessible>1</reporter_accessible>

<cclist_accessible>1</cclist_accessible>

<classification_id>3</classification_id>

<classification>Components</classification>

 <product>Core</product>

 <component>XPCOM</component>

 <version>Trunk</version>

 <rep_platform>PC</rep_platform>

 <op_sys>Windows XP</op_sys>

 <bug_status>NEW</bug_status>

 <priority>--</priority>

 <bug_severity>normal</bug_severity>

 …

 <who name="David
Hyatt">hyatt@mozilla.org</who>

 <bug_when>2000-04-13 16:16:07
PST</bug_when>

 …

 <bug_status>VERIFIED</bug_status>

<resolution>WORKSFORME</resolution>

</bug>

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

57

projects and may be an added benefit for using the
open-source development model.” (Emphasis Mine).

• Code Reusability: The general modularity and great
reuse of components are helping developers, because
instead of recoding something (introducing new bugs)
the reuse of an already debugged component reduces
the overall defect density. This aspect was found in
other research groups focusing on reuse.

• As it can be observed from the graph, code originated
from reuse has a significant higher quality compared to
traditional code, and the gap between the two grows
with the size (as expected from basic probabilistic
models of defect generation and discovery).

• The second aspect is that the fact that bug data is
public allows a “prioritization” and a better
coordination of developers on triaging and in general
fixing things. This explains why this faster
improvement appears not only in code that is reused,
but in newly generated code as well; the sum of the
two effects explains the incredible difference in quality
(50-150 times), higher than any previous effort like
formal methods, automated code generation and so on.
And this quality differential can only grow with time,
leading to a long-term push for proprietary vendor to
include more and more open source code inside of their
own products to reduce the growing effort of bug
isolation and fixing.

C. Economic Analysis

Open Source Software are available free of royalties and
fees, leading to the confusion around the commonly used
term `free software'. Regrettably the English language
does not have separate concepts for free-of-charge and free
as in unconstrained; other languages are better equipped to
describe the difference between `freedom' and `free of
charge' (libre vs.gratis). Proponents of free software
licences tend to emphasise liberty over cost although in
practice the main open source projects are free in both
senses of the word.

From a business perspective the purchase cost of software
is only one factor; total cost of ownership (TCO) is what
really matters. Other things being equal, the solution with
lowest TCO is usually the most desirable one. Arguments
in favour of low TCO for open source software include:

• Possibly zero purchase price
• Potentially no need to account for copies in use,

reducing administrative overhead
• Claimed reduced need for regular upgrades

(giving lower/nil upgrade fees, lower
management costs)

• Claimed longer uptimes and reduced need for
expensive systems administrators

• Near-zero vulnerability to viruses eliminating
need for virus checking, data loss and downtime

• Claimed lower vulnerability to security breaches
and hack attacks reducing systems administration
load

• Claimed ability to prolong life of older hardware
while retaining performance

Some longer-term claims are more difficult to substantiate
yet they need to be taken into account:

• Better adherence to standards permits competition
in the market, reducing vendor lock-in and
consequent monopoly pricing

• Availability of source code provides greater
continuity and security against

• Financial collapse of vendors of key products
• Vendors choosing to withdraw support for

unprofitable products
• Protection against being required to fit your IT

strategy to the cash needs of your software
supplier

Unfortunately in this area there are numerous claims and
counter claims. Reliable TCO information is practically
unobtainable, although the case studies which form part of
this guide provide a large amount of circumstantial
evidence in favour of the argument. Most businesses will
have to choose the argument on its merits and choose to
back the use of Open Source software where it seems most
likely to provide either a clear cost win, or valuable
leverage over entrenched suppliers.
Access costs also pose problems for authors who wish to
create something based on another work but are not
willing to pay the copyright holder for the rights to the
copyrighted work. The second type of cost incurred with a
copyright system is the cost of administration and
enforcement of the copyright. These self-made protections
free the general society of the costs of policing copyright
infringement. Thus, on several fronts, there is an efficiency
argument to be made on behalf of open sourced goods.

5. Comparison with free software

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

58

The main difference is that by choosing one term over the
other (i.e. either "open source" or "free software") one lets
others know about what one's goals are. As Richard
Stallman puts it, "Open source is a development
methodology; free software is a social movement.”
Critics have said that the term “open source” fosters an
ambiguity of a different kind such that it confuses the mere
availability of the source with the freedom to use, modify,
and redistribute it. Developers have used the alternative
terms Free/open source Software (FOSS),
or Free/Libre/open source Software (FLOSS),
consequently, to describe open source software which is
also free software.
The term “open source” was originally intended to be
trademarkable; however, the term was deemed too
descriptive, so no trademark exists. The OSI would prefer
that people treat Open Source as if it were a trademark,
and use it only to describe software licensed under an OSI
approved license.
OSI Certified is a trademark licensed only to people who
are distributing software licensed under a license listed on
the Open Source Initiative's list.
Open source software and free software are different terms
for software which comes with certain rights, or freedoms,
for the user. They describe two approaches and
philosophies towards free software.Open source and free
software (or software libre) both describe software which
is free from onerous licensing restrictions. It may be used,
copied, studied, modified and redistributed without
restriction. Free software is not the same as freeware,
software available at zero price.
The definition of open source software was written to be
almost identical to the free software definition. There are
very few cases of software that is free software but is not
open source software, and vice versa. The difference in the
terms is where they place the emphasis. “Free software” is
defined in terms of giving the user freedom. This reflects
the goal of the free software movement. “Open source”
highlights that the source code is viewable to all;
proponents of the term usually emphasize the quality of
the software and how this is caused by the development
models which are possible and popular among free and
open source software projects.
Free software licenses are not written exclusively by the
FSF. The FSF and the OSI both list licenses which meet
their respective definitions of free software or open source
software.
The FSF believes that knowledge of the concept of
freedom is an essential requirement, insists on the use of
the term free, and separates itself from the open source
movement.

Limitations

Limitation as persistent open source software

Anyone with the skills can view the code and contribute to
it. It is highly flexible due to source code access (third
parties can customize it completely) and the requirements
of a development model wherein the atomic contributions
(as in small, not nuclear) of thousands of developers are
organized within a single product.
There is a lack of concrete incentive to motivate
developers to contribute to open source projects and the
real problem, however, is that open source must rely on
the willingness of programmers to contribute code without
financial compensation. So after a time, the developer
loses his interest and concentration in developing code for
software.

Fulfilling the Promises of OSS

Open source sharing of information in virtual globes
provide a means to identify economically and
environmentally beneficial opportunities for waste
management if the data have been made available.

1. Reduce embodied transport energy by reducing
distances to recycling facilities.

2. Choose end of life at recycling facilities rather than
landfills.

3. Establish industrial symbiosis and eco-industrial
parks on known by-product synergies.

The Distribution Terms

Open source doesn't just mean access to the source code.
The distribution terms of open-source software must
comply with the following criteria:

Free Redistribution

The license shall not restrict any party from selling or
giving away the software as a component of an aggregate
software distribution containing programs from several
different sources. The license shall not require a royalty or
other fee for such sale.

Source Code

The source code must be the preferred form in which a
programmer would modify the program. Deliberately
obfuscated source code is not allowed. Intermediate forms
such as the output of a preprocessor or translator are not
allowed. The program must include source code, and must
allow distribution in source code as well as compiled form.
Where some form of a product is not distributed with
source code, there must be a well-publicized means of
obtaining the source code for no more than a reasonable
reproduction cost preferably, downloading via the Internet
without charge.

IJCSMS International Journal of Computer Science and Management Studies Volume 11, Issue 03, Oct 2011
ISSN (Online):2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

59

 Derived Works

The license must allow modifications and derived works,
and must allow them to be distributed under the same
terms as the license of the original software.

Integrity of the Author's Source Code

The license may restrict source-code from being
distributed in modified form only if the license allows the
distribution of "patch files" with the source code for the
purpose of modifying the program at build time. The
license must explicitly permit distribution of software built
from modified source code. The license may require
derived works to carry a different name or version number
from the original software.

No Discrimination against Persons or Groups

Copyright restriction then creates access costs on
consumers who value the original more than making an
additional copy but value the original less than its price.
Thus, they will pay an access cost of this difference.
Access costs also pose problems for authors who wish to
create something based on another work but are not
willing to pay the copyright holder for the rights to the
copyrighted work. The second type of cost incurred with a
copyright system is the cost of administration and
enforcement of the copyright. The license must not
discriminate against any person or group of persons.

 License Must Not Be Specific to a Product

The rights attached to the program must not depend on the
program's being part of a particular software distribution.
If the program is extracted from that distribution and used
or distributed within the terms of the program's license, all
parties to whom the program is redistributed should have
the same rights as those that are granted in conjunction
with the original software distribution.

Advantages of Open Source Software

Many people like Open Source for many reasons, here is
an overview of some of the more important reasons. You
can read through these if you're not sure you want to try
Open Source yet, or you can continue to the pages
describing actual programs you can use.

• Security: Open Source Software suffers from fewer
security vulnerabilities than Microsoft products.

• Features: Open Source programs tend to have more
advanced features and customizability than
proprietary products

• Cost: Open Source Software is FREE. You pay
nothing for a very high quality product.

• Community: In the Open Source development
community, any skilled individual can contribute to
projects in many ways.

6. Conclusion

The Open Source Initiative (OSI) is a non-profit
corporation with global scope formed to educate about and
advocate for the benefits of open source and to build
bridges among different constituencies in the open source
community.
One of our most important activities is as a standards
body, maintaining the Open Source Definition for the good
of the community. The Open Source Initiative Approved
License trademark and program creates a nexus of trust
around which developers, users, corporations and
governments can organize open source cooperation.

References
[1] R.C. Cheung, “A user-oriented software reliability model”,

IEEE Transactions on Software Engineering, vol. 6, no. 2,
March 1980, pp. 118-125.

[2] en.wikipedia.org/wiki/Open-source software
[3] Apache Group, 1999. Apache FAQ

http://httpd.apache.org/docs/misc/FAQ.html#support
[4] Succi, Paulson, Eberlein. An Empirical Study of Open-Source

and Closed-Source Software Products, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING,
V.30/4, april 2004.

[5] Moody, G. Rebel code—Inside Linux and the open source
movement. Perseus Publishing, Cambridge, MA, 2001.

[6] Vixie, P. Software engineering, in Open sources: Voices from
the open source revolution, C. Di Bona, S. Ockman, and M.
Stone, O’Reilly, Eds. San Francisco, 1999.

[7] Kraut, R. E., and Streeter L. A. Coordination in software
development. Communications of the ACM, 38 (1995), 69–
81.

[8] Moon, J. Y., and Sproull L. Essence of distributed work: The
case of Linux kernel. First Monday, 5, (2000).

[9] Markus, M. L., Manville, B., and Agres, E. C. What makes a
virtual organization work?. Sloan Management Review, 42
(2000), 13–26.

[10] Ousterhout, J., Free Software needs profit. Communications
of the ACM, 42 (1999), 44–45.

[11] Mohagheghi, Conradi, Killi and Schwarz called “An
Empirical Study of Software Reuse vs. Defect-Density
and Stability”

