
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 03, Oct 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

36

Component Based Effort Estimation Component Based Effort Estimation Component Based Effort Estimation Component Based Effort Estimation DDDDuringuringuringuring

Software Development: Software Development: Software Development: Software Development: Problematic ViewProblematic ViewProblematic ViewProblematic View

VINIT KUMAR

Research Scholar, MBU Solan (India)
lohanvinit@gmail.com

Abstract

Component-based software development (CBD) is an
emerging discipline that promises to take software
engineering into a new era. Building on the
achievements of object-oriented software construction,
CBD aims to deliver software engineering from a
cottage industry into an industrial age for Information
Technology, wherein software can be assembled from
components, in the manner that hardware systems are
currently constructed from kits of parts. Component-
based development (CBD) is a branch of software
engineering that emphasizes the separation of
concerns in respect of the wide-ranging functionality
available throughout a given software system. This
practice aims to bring about an equally wide-ranging
degree of benefits in both the short-term and the long-
term for the software itself and for organizations that
sponsor such software. Software engineers regard
components as part of the starting platform
for service-orientation. Components play this role, for
example, in Web services, and more recently,
in service-oriented architectures (SOA), whereby a
component is converted by the Web service into a
service and subsequently inherits further
characteristics beyond that of an ordinary component.
Components can produce or consume events and can
be used for event driven architectures (EDA).
Keywords: Component based software
development, effort estimation metrics
parameters, reusability, and maintainability.

Introduction

Component based software development [2, 3] is a
dream of the software industries, where
programmers would become merely assembly
workers and development process of a new
software system would be similar to assembling.
And it is demand of today software market
because today software project is becoming more
and more complex and is hard to manage and
control.

Here we will introduce new paradigm for
software development as well as provided metric
for effort estimation that will improve the
complexity of component, dependency and
composite of component based software
development. With the help of metrics, a bottom-
up measuring process from component to the
system can full fill evolution for component
oriented software development complexity. The
purpose of metrics is characterized with the
simplicity, reusability, portability,
maintainability, reliability etc.
The idea behind component based software
development approach is, develop software
system by selecting appropriate off-the-shelf
component and then to assemble them a well
defined software architecture. It is new approach
in software engineering community. The purpose
of component based software engineering is to
develop large system that incorporate previously
developed or existing component, thus cutting
down an development time and cost. It can also
reduce maintenance associated with the
upgrading of large system.

Historical Background

In the 1960s, programmers built scientific
subroutine libraries that were reusable in a broad
array of engineering and scientific applications.
Though these subroutine libraries reused well-
defined algorithms in an effective manner, they
had a limited domain of application. Commercial
sites routinely created application programs from
reusable modules written in Assembler, COBOL,
PL/1 and other second- and third-generation
languages using both System and user
application libraries.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 03, Oct 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

37

As of 2010, modern reusable components
encapsulate both data structures and the
algorithms that are applied to the data structures.
It builds on prior theories of software objects,
software architectures, software frameworks and
software design patterns, and the extensive
theory of object-oriented programming and the
object oriented design of all these. It claims that
software components, like the idea of hardware
components, used for example in
telecommunications, can ultimately be made
interchangeable and reliable. On the other hand,
it is argued that it is a mistake to focus on
independent components rather than the
framework (without which they would not exist)

COMPONENT

In defining a software component, this definition
can be quoted: “A component is a software
element that conforms to a software model and
can be independently deployed and composed
without modification according to a composition
standard” [7]. CBSE is about creating a software
package in such a manner as to be able to easily
reuse its constituent components in other similar
or dissimilar applications. It includes writing
high level code that glues together pieces of pre-
built functionalities or software building blocks
called components. Component is one of the
parts of the system that make up a system. It may
be hardware, software or firmware and may be
sub divided into other components

‘Component based software development’

A. Independent Software
Development

Large software systems are necessarily
assembled from components developed by
different people. To facilitate independent
development, it is essential to decouple
developers and users of components through
abstract and implementation-neutral interface
specifications of behavior for components.

B. Reusability

While some parts of a large system will
necessarily be special-purpose software, it is
essential to design and assemble pre-existing
components (within or across domains) in
developing new components.

C. Software quality

A component or system needs to be shown to
have desired behavior, either through logical
reasoning, tracing, and/or testing. The quality
assurance approach must be modular to be
scalable.

D. Maintainability

A software system should be understandable,
and easy to evolve [5],[6].

Research goal

Component-based Software development is a
promising way to improve quality, time to
market and handle the increasing complexity of
software management.
It has been proven that software complexity is
one of the major contributing factors to the cost
of developing and maintaining software.
Meanwhile, effort estimation is one of critical
factor that directly affect the reusability,
portability, reliability and maintainability.
In component based software development the
architecture complexity is mainly attributable to
the dependencies between component, such as
procedure call, message passing and
conversation protocol. Here we will introduce
component based metrics that will directly affect
on the interface among component and
component interface is the key factor of
component complexity.
In the context of software effort estimation [1],
system sizes the taken as a main driver of the
system development effort. But other structure

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 03, Oct 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

38

design properties, such as coupling, cohesion and
complexity have been suggested as additional
factor. Here, using effort data from component
oriented development project [2,3], we empirical
investigate the relationship between component
size and development effort for a component and
what additional impact structural properties such
as connectivity, component interfacing have an
effort. This paper proposes a practical, repeatable
and accurate analysis procedure to investigate
relationship between component properties and
development effort.

Objective of the Proposed Research

System reliability is increased, reused
components, which have been exercised in
working systems, should be more reliable
than new components. These components
have been tested in operational systems
and have therefore been tested to realistic
operating conditions.
Overall process risk is reduced if a
component already exists; there is less
uncertainty in the costs of reusing that
component than in the costs of
development. This is an important factor for
project management as it reduces the
uncertainties in project cost estimation. This
is particularly true when relatively large
components such as sub-systems are
reused.
Software development time can be reduced.
Bringing a system to market as early as
possible when it is mostly wanted is often
more important than overall development
costs. Reusing components speeds up
system production because both
development and validation time should be
reduced.
Effective use can be made of specialist.
Instead of application specialists doing the
same boring work on different projects,
these specialists can develop interesting
new reusable components which
encapsulate their knowledge.

Purposed Work

Here we will measure the effort of software
project that is to develop based on component
technology, such as COM/DCOM. COM/DCOM
is general architecture for component software. It
will define how component and their client

interact directly and dynamically. DCOM is a
protocol, that enables software components to
communicate directly over network. These are
designed for use across multiple network
transports, including internet protocol such as
HTTP.
COM AND DCOM HAVE PROVIDED a
foundation for building component-based
applications. Although they were initially
available only on Windows platforms, the
ongoing porting efforts to all major versions of
Unix and mainframes (11) might turn
COM/DCOM into a major cross-platform
integration tool. The next generation of COM,
called COM+, aims at simplifying the
construction of COM applications by providing
support in languages and tools and by providing
a set of essential object services.

Main features

COM/DCOM’s main features—transparency,
extensibility, and indirection, versioning, and
server-lifetime management—make it an
attractive platform for research and development
of distributed systems and applications.

Scope for future

The component oriented software project is
implemented based on Microsoft technology
such as COM/DCOM. Here we have been
designed component oriented metrics that are
used to determine effort of component oriented
software. These metrics are designed in such a
way that it will reduces more than 64 percentage
effort of software as compared to meta mata
metrics that are used to determine effort of
traditional software development..

REFERENCES

1. A. M. Zaremski and J. M. Wing,
“Specification matching of software
components”, ACM Transactions on
Software Engineering & Methodology,
6(4):333-369, October 1997.

2. X.Cai, M.R. Lyu, K. Wong, Component-
Based Soft-ware Engineering: Technologies,
Development Frameworks, and Quality
Assurance Schemes, Pro-ceedings APSEC
2000, Seventh Asia-Pacific Software
Engineering Conference, Singapore,
December 2000, pp 372-379.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 03, Oct 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

39

3. 3.X.Cai, M.R. Lyu, K. Wong, Component-
Based Soft-ware Engineering: Technologies,
Development Frameworks, and Quality
Assurance Schemes, Pro-ceedings APSEC
2000, Seventh Asia-Pacific Software
Engineering Conference, Singapore,
December 2000, pp 372-379

4. D. Box, Essential COM, Addison-Wesley,
Reading, Mass., 1998.

5. G.C. Hunt and M.L. Scott, A Guided Tour
of the Coign Automatic Distributed
Partitioning System, Tech. Report MSR-TR-
98-32,Microsoft Research, Redmond,
Wash., 1998.

6. Y.M. Wang and W.J. Lee, “COMERA:
COM Extensible Remoting Architecture,”
Proc. COOTS ’98: Fourth USENIX Conf.
Object-Oriented Technologies and Systems,
Usenix, Berkeley, Calif., 1998,pp. 79–88;
http://www.research.microsoft.com/~ymwan
g/papers/COOTS98CR.htm.

7. George T. Heineman and William T.
Councill, “Component-Based Software
Engineering Putting the Pieces Together”,
Addison-Wesley, Boston, MA ,880, June
2001.

8. “The Component Object Model
Specification,” Microsoft Corp., Redmond,
Wash.,1995;
http://www.microsoft.com/com/comdocs.ht
m.

9. “COM+,” Microsoft Corp., 1998;
http://www.microsoft.com/com/complus.ht
m.

10. 10 . “DCE 1.1: Remote Procedure Call
Specification,” The Open Group,
Cambridge, Mass., 1997;
http://www.rdg.opengroup.org/public/pubs/c
atalog/c706.htm.

11. N. Brown and C. Kindel, “Distributed
Component Object Model Protocol—
DCOM/1.0,” Microsoft Corp., 1998;
http://www.microsoft.com/com/.

12. Don Box, Essential COM, Addison Wesley,
1998.

13. “Microsoft Transaction Server,” Microsoft
Corp., 1998;
http://www.microsoft.com/com/mts.htm.

14. “Millennium: Self-Tuning, Self-Configuring
Distributed Systems,” Microsoft Research,
1998;
http://research.microsoft.com/sn/Millennium

