
IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

300

“A STUDY ON SECURE SHELL (SSH) PROTOCOL”

NIDHI KANDHIL 1 , Dr. ANIL KUMAR 2

1Research Scholar, CMJ University, Shillong (Meghalaya)
2Asstt. Professor & Head, Dept. of Computer Science & Applications,

 Pt. N.R.S. Govt. College, Rohtak (India)
__

ABSTRACT

Secure Shell (SSH) provides an open protocol for securing network communications that is less complex and expensive
than hardware-based VPN solutions. Secure Shell client/server solutions provide command shell, file transfer, and data
tunneling services for TCP/IP applications. SSH connections provide highly secure authentication, encryption, and data
integrity to combat password theft and other security threats. VanDyke Software® clients and servers are mature native
Windows implementations that offer a range of SSH capabilities and are interoperable with SSH software on other
platforms.

Key words: SSH, Vshell Server, SecureCRT, SecureFX, OPEN SSH, OSSH, FreeSSh, GPL SSH

I. INTRODUCTION

SSH, the Secure Shell, is a popular software-
based approach to network security. It is a
protocol that allows user to log into another
computer over a network, to execute commands
in a remote machine, and to move files from one
machine to another. It provides authentication
and encrypted communications over unsecured
channels.
The Secure Shell protocol provides four basic
security benefits:

- User Authentication

- Host Authentication

- Data Encryption

- Data Integrity

Secure Shell authentication, encryption and
integrity ensure identities and keep data secure.

User Authentication

Authentication, also referred to as user identity,
is the means by which a system verifies that
access is only given to intended users and denied
to anyone else. Many authentication methods are

currently used, ranging from familiar typed
passwords to more robust security mechanisms.

 Host Authentication

A host key is used by a server to prove its
identity to a client and by a client to verify a
“known” host. Host keys are described as
persistent (they are changed infrequently) and
are asymmetric—much like the public/private
key pairs discussed above in the Public key
section. If a machine is running only one SSH
server, a single host key serves to identify both
the machine and the server. If a machine is
running multiple SSH servers, it may either have
multiple host keys or use a single key for
multiple servers.

 Data Encryption

Encryption, sometimes referred to as privacy,
means that your data is protected from disclosure
to a would-be attacker “sniffing” or
eavesdropping on the wire (see the Threats
section for more details). Ciphers are the
mechanism by which Secure Shell encrypts and
decrypts data being sent over the wire. A block
cipher is the most common form of symmetric
key algorithms (e.g. DES, 3DES, Blowfish,
AES, and Two fish).

 Data Integrity

Data integrity guarantees that data sent from one
end of a transaction arrives unaltered at the other

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

301

end. Even with Secure Shell encryption, the data
being sent over the network could still be
vulnerable to someone inserting unwanted data
into the data stream.

II. FEATURES OF SSH
The SSH protocol provides the following
safeguards:

• After an initial connection, the client
can verify that it is connecting to the
same server it had connected to
previously.

• The client transmits its authentication
information to the server using strong,
128-bit encryption.

• All data sent and received during a
session is transferred using 128-bit
encryption, making intercepted
transmissions extremely difficult to
decrypt and read.

• The client can forward X11 applications
from the server. This technique, called
X11 forwarding, provides a
secure means to use graphical
applications over a network.

Because the SSH protocol encrypts everything it
sends and receives, it can be used to secure
otherwise insecure protocols. Using a technique
called port forwarding, an SSH server can
become a conduit to securing otherwise insecure
protocols, like POP, and increasing overall
system and data security.

IV. WHY USE SSH?

Nefarious computer users have a variety of tools
at their disposal enabling them to disrupt,
intercept, and re-route network traffic in an effort
to gain access to a system. In general terms,
these threats can be categorized as follows:

• Interception of communication between
two systems — In this scenario, the
attacker can be somewhere on the
network between the communicating
entities, copying any information passed
between them. The attacker may
intercept and keep the information, or
alter the information and send it on to
the intended recipient.

This attack can be mounted through the
use of a packet sniffer — a common
network utility.

• Impersonation of a particular host —
Using this strategy, an attacker's system
is configured to pose as the intended
recipient of a transmission. If this
strategy works, the user's system
remains unaware that it is
communicating with the wrong host.

This attack can be mounted through
techniques known as DNS poisoning or
IP spoofing.

Both techniques intercept potentially sensitive
information and, if the interception is made for
hostile reasons, the results can be disastrous.
If SSH is used for remote shell login and file
copying, these security threats can be greatly
diminished. This is because the SSH client and
server use digital signatures to verify their
identity. Additionally, all communication
between the client and server systems is
encrypted. Attempts to spoof the identity of
either side of a communication does not work,
since each packet is encrypted using a key
known only by the local and remote systems.

III. FUNCTIONALITY OF SECURE SHELL

Secure Shell provides three main capabilities,
which open the door for many creative secure
solutions.

- Secure command-shell

- Port forwarding

- Secure file transfer

 Secure Command Shell

Command shells such as those available in
Linux, Unix, Windows, or the familiar DOS
prompt provide the ability to execute programs
and other commands, usually with character
output. A secure command-shell or remote logon
allows you to edit files, view the contents of

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

302

directories and access custom database
applications.

 Port forwarding

Port forwarding is a powerful tool that can
provide security to TCP/IP applications
including e-mail, sales and customer contact
databases, and in-house applications. Port
forwarding, sometimes referred to as tunneling,
allows data from normally unsecured TCP/IP
applications to be secured. After port forwarding
has been set up, Secure Shell reroutes traffic
from a program (usually a client) and sends it
across the encrypted tunnel ,then delivers it to a
program on the other side (usually a server).

Secure File Transfer

Secure File Transfer Protocol (SFTP) is a
subsystem of the Secure Shell protocol. In
essence, it is a separate protocol layered over the
Secure Shell protocol to handle file transfers.
SFTP has several advantages over non-secure
FTP. First, SFTP encrypts both the
username/password and the data being
transferred. Second, it uses the same port as the
Secure Shell server, eliminating the need to open
another port on the firewall or router. Using
SFTP also avoids the network address translation
(NAT) issues that can often be a problem with
regular FTP. One valuable use of SFTP is to
create a secure extranet or fortify a server or
servers outside the firewall accessible by remote
personnel and/or partners (sometimes referred to
as a DMZ or secure extranet) two sides to be
unable to communicate with each other.

IV. FILE TRANSFER PROTOCOLS USING
SSH

There are multiple mechanisms for transferring
files using the Secure Shell protocols.

• Secure copy (SCP), which evolved from
RCP protocol over SSH

• rsync, intended to be more efficient than
SCP

• SSH File Transfer Protocol (SFTP), a
secure alternative to FTP (not to be
confused with FTP over SSH)

• Files transferred over shell protocol
(a.k.a. FISH), released in 1998, which
evolved from Unix shell commands
over SSH

V. PROBLEMS WITH SSH PROTOCOL

SSH is not widely supported when compared to
the traditional remote access programs.
Consequently, mobile users who do not have
access to SSH must either revert to the
traditional insecure methods or forfeit
connectivity. Using security terminology, this
lack of access can be seen as a problem in
availability. If the insecure methods are used,
security is compromised and all the benefits of
SSH are lost .

In user authentication, SSH provides
backwards compatibility with r*-based programs
by supporting .rhosts and /etc/hosts.equiv
configuration files. Providing this feature
encourages the use of traditional insecure means
of connection. Naturally, systems which remain
configured in this manner are at risk of
traditional r*-based attacks. Kerberos is also
supported as a method for user authentication
although this system is known to have its own
set of security problems.

In remote host authentication, SSH1

uses the RSA public/private key method. The
default configuration permits users to accept new
public keys of remote hosts without
authentication through certificates.
Unfortunately, users who choose to accept these
public keys are vulnerable to man-in-the-middle
attacks. To prevent such an attack, system
administrators are responsible for managing the
public keys of commonly used hosts. SSH2
addresses this shortcoming by optionally
supporting various certificate formats.

Similar problems are present in systems
that employ dumb-terminals and Xterminals on a
LAN. On these terminals, all processing occurs
on other computers located across the network so
the flow of unencrypted data (especially
passwords) can be intercepted. Therefore, SSH is
rendered insecure on these terminals.

User errors can lead to security

breaches because they may not be aware that
security is compromised if an insecure channel is

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

303

traversed anywhere along the communication
path. For instance, a user who first telnets to a
computer located on the LAN before using SSH
to access a remote host will allow hackers to
monitor the insecure portion of the path. Such an
error is very easy to overlook by the average user
and cannot be detected and prevented by SSH.

SSH relies on configuration and key

files to determine access rights. Systems that use
Sun Microsystems' Network File System (NFS)
to access these files pose a major security risk.
Since the NFS specification is widely available
and packets are transmitted across the local area
network (LAN) in clear text, hackers can easily
employ NFS sniffers to obtain secret keys, alter
public keys, and add public keys.

Since there are numerous security
breaches reported and numerous patches issued
for SSH [3], [5], [12], [13], system
administrators have the tedious task of updating
and verifying the security of their system. Due to
human nature, system administrators may fail to
follow this rapid pace of change. Ignorance may
lead to situations similar to the buffer overflow
problem where some systems remain unpatched
long after a patch has been issued. The original
SSH implementation and subsequent patches
must be obtained using a secure channel. These
packages must be signed by a reputable authority
since there is the possibility of obtaining corrupt
software. Once a patch is installed, system
administrators face the difficult task of verifying
that a breach did not occurred before the
installation.

To the horror of system administrators,
SSH allows tunnelling which can be used to
subvert firewalls and breach security policies. It
creates a large hole in the firewall that can lead
to security breaches in a surprisingly different
manner. Hackers can target SSH as a means of
penetrating firewalls and attacking internal
computers.

VI. PROPOSED SOLUTIONS

All traditional remote access programs, which
includes the corresponding daemons and clients,
should be removed from the system. Such action
will prevent most attempts to use insecure means
of communication. Although it may be adequate
to remove only the server components
(daemons), removing the client components will

prevent security breaches on other remote
systems.
Strict public host key checking must be enforced.
This option is specifiable by the system
administrator. New host public keys should
never be accepted at face value. If SSH1 is used,
connections that present new host public keys
should be disallowed unless they can be verified
over a secure channel such as through telephone
or courier mail. If SSH2 is used, new public host
keys should be verified using OpenPGP, X.509,
or SPKI certificates. For mobile users of SSH1,
public keys of the local system should be stored
on a write-protected floppy disk. When away
from the local system, the public key can be
supplied from the write protected floppy. Users
must still trust the system they are using to
access the network. With SSH2, the use of
certificates also requires a policy for checking
certificate revocation lists.

Since the use of NFS is possible,
configuration files and key files should be stored
and retrieved in an encrypted form. Currently,
only the user private key entry is stored in
encrypted form in the best scenario. Even with
this precaution, the private key file is prone to
integrity attacks since only the individual entry is
encrypted. The most secure solution involves
encrypting and signing all files to ensure
confidentiality, integrity, and authenticity while
traversing an insecure LAN via NFS.
Unfortunately, this solution cannot be
implemented by the system administrator alone
since it requires alterations to the SSH protocol
to ensure complete security.

SSH should not be allowed on dumb-
terminals or X-terminals unless communication
to the corresponding compute servers is
encrypted. Such a policy may create an
inequality gap between workstation and terminal
users.

Education must be provided to prevent
users from introducing an insecure channel along
the communication path to the remote host. It is
nearly impossible for SSH to detect whether all
segments of the communication path are insecure
since SSH may be used on only a portion of the
path. Such as task lies outside the jurisdiction of
SSH and may also lie outside the jurisdiction of
the local system. For instance, while a mobile
employee is on a business trip, he /she initially

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

304

telnets to a gateway and then uses SSH to access
the company network.

To restrict tunneling, the SSH protocol must be
altered to enable monitoring of tunnel entry and
exit points. Monitoring would allow policy
Enforcement, denying certain ports from being
tunneled in or out of the LAN. Since this option
is currently not supported, tunneling remains a
serious security risk. The only option remaining
is for system administrators to configure SSH
with tunneling disabled, which may be too
restrictive where access to X11 is required.

All user private keys should be stored in
encrypted form to minimize damage caused by
breaches in host security. This option is available
in SSH but is not mandatory. The SSH
implementation must be altered to enforce this
restriction. Under these precautions, a hacker
who has gained access to a regular user account
would be unable to read the user's private key.
The passphrase, which is chosen by the user to
encrypt his / her private key, should be checked
for adequate strength. As well, the security
policy should specify that passphrases must
never be stored on any medium other than in the
user's head.

Both local and remote hosts must be
trusted in order to use SSH. Under SSH1, the
local system must possess the authentic public
key of the remote system. Even under SSH2,
where certificates are used to authenticate remote
host public keys, the local system must be
trusted to contain the genuine public key of the
CA or the trusted PGP key. Unfortunately, these
judgments cannot be made by system
administrators and are left in the hands of users.
For instance, mobile employees must determine
whether a host can be trusted before using its
SSH facilities to access the corporate network.

VII. CONCLUSION

System administrators should adhere to the
following guidelines in determining whether
SSH will improve security on their system. SSH
cannot improve security on systems that contain
dumb-terminals or X-terminals connected to the
LAN. Any usage from these terminals will create
an insecure segment along the communication
path. SSH cannot improve security on systems

that make use of NFS. SSH cannot improve
security if the public keys of all commonly used
hosts cannot be authenticated.

Users should adhere to the following
guidelines in determining when usageof SSH is
appropriate. If a public host key cannot be
proven to be authentic, SSH should not be used
to communicate with the corresponding remote
host. SSH should not be used if the local or
remote host makes use of NFS. SSH should not
be used if traditional remote access methods are
used anywhere along the communication path.
Finally, SSH should not be used if the user does
not trust the local host or remote host. If usage of
SSH is deemed inappropriate, access to the
remote system is not possible and users should
not revert to the traditional insecure methods.

From the above restrictions, the current
SSH specification has only limited real-world
applicability. The major barriers are public host
key authentication and NFS restrictions.
Authenticating all public host keys is currently
impractical since most systems use the older
SSH1 standard. Since NFS is implemented on
most systems, the final set of applicable systems
is fairly small.

Even if the problems presented in this

paper are resolved, it is only a matter of time
before hackers discover new vulnerabilities. SSH
must continue improving and system
administrators must treat this critical service
seriously by keeping their systems updated.
Security is a race between hackers and system
administrators. Therefore, evaluating the security
of a solution involves determining how far one
party is ahead of the other.

REFERENCES

[1] E.G. Amoroso, "Fundamentals of Computer Security
Technology," Prentice Hall PTR, Upper Saddle River, New
Jersey, 1994.

[2] M. Abadi, "Explicit Communication Revisited: Two New
Attacks on Authentication Protocols", IEEE Transactions on
Software Engineering, vol. 23, no. 3, pp. 185-186, Mar.
1997.

[3] J. Barlow, "SSH Patch Repository," Feb 11, 1999.
http://www.ncsa.uiuc.edu/General/CC/ssh/patch_repository/

[4] A. Carasik and S. Acheson, "The Secure Shell (SSH)
Frequently Asked Questions," rev. 1.1, Nov. 2, 1999.
http://www.employees.org/~satch/ssh/faq/

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

305

[5] "CERT Advisory CA-98.03," Secure Networks Inc, Mar.
2, 1998. ftp://info.cert.org/pub/cert_advisories/CA-98.03.ssh-
agent

[6] "Curing remote-access security ailments. ssh, the secure
shell, can create a moderately secure network connection,"
SunWorld, Jan. 1996.
http://www.sunworld.com/swol-01-1996/swol-01-
sysadmin.html

[7] A. Engelfriet, "The comp.security.pgp FAQ," ver. 1.5,
Oct. 22, 1998. http://www.pgp.net/pgpnet/pgp-faq/

[8] P. Galvin, "Enter the secure shell. Turn remote login from
security hole to security strength with ssh," SunWorld, Feb.
1998. http://www.sunworld.com/sunworldonline/swol-02-
1998/swol-02-security.html

[9] D. Harris, "Diffie-Hellman Key Exchange," Aug. 31,
1998.http://spectral.mscs.mu.edu/NetworksClass/DHKeyExc
h.html

[10] P. Metzger (chair), "Secure Shell Charter," The Internet
Engineering Task Force, Jun. 4, 1999.
http://www.ietf.org/html.charters/secsh-charter.html

[11] T. O'Boyle, J. Sergent, and J.S. May, "The Secure
Shell," Mar. 6, 1998.
http://csociety.ecn.purdue.edu/~sigos/projects/ssh/

[12] A. Polyakov, "SSH and beyond," Aug 14, 1998.
http://fy.chalmers.se/~appro/ssh_beyond.html

[13] SSH Communications Security Web Page, Dec. 5, 1999.
http://www.ssh.net/

[14] K. Suominen, "Getting Started With SSH," ver. 1.5, Feb.
24, 1998.
http://www.tac.nyc.ny.us/~kim/ssh/

