
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

Fault Prediction in Object Oriented System Using the
Coupling and Cohesion of Classes

Mr. Amol S. Dange1, Prof. Dr. S. D. Joshi2

1Bharti Vidyapeeth Deemed University, Pune, Maharashtra, 411043, India
amol.dange@gmail.com

 2Bharti Vidyapeeth Deemed University, Pune, Maharashtra, 411043, India
sdj@live.in

Abstract
Building efficient systems is one of the main challenges for software
developers, who have been concerned with dependability-related issues as
they built and deployed. Lots of changes often needs including the nature of
faults and failures and the complexity of systems. Sometimes accepting
minor errors always need efforts to eliminate faults that might cause them is
in the core of dependability. To this end various fault tolerance mechanisms
have been investigated by researchers and used in industry. Unfortunately,
more often than not these solutions exclusively focus on the implementation,
ignoring other development phases, most importantly the earlier ones. This
creates a dangerous gap between the requirement to build dependable (and
fault prediction) systems and the fact that it is not dealt with until the
implementation step.
A current software engineering gives attention towards only normal behavior
with assumption that all faults can be removed during development. In fact
every phase SDLC needs to be focused with phase-specific fault detection
means.
We mean to conclude that SDLC requires:

 Integration of fault detection starting from requirement and
architecture.

 Making fault detection-related decisions at each phase by explicit
modeling of faults.

 Developing dedicated tools for fault detection modeling; providing
domain-specific application-level fault prediction mechanisms.

Part I: Fault Prediction engineering: from requirements to code
Part II: Languages and Tools for engineering fault prediction systems
Keywords: – Design pattern, software metrics, measure theory, coupling,
cohesion

I. INTRODUCTION

Trying to control software quality - and all related at tributes, it is
obviously necessary to measure to what extend these attributes is
achieved by a certain project. In this spirit, many software metrics have
been established in the past.
In structured design and programming the importance of coupling
and cohesion as main attributes related to the goodness of
decomposition has been well understood; software engineering experts
assure that designs with low coupling and high cohesion lead to
projects that are both, more reliable and more maintainable.
The following list introduces the different types of coupling:
1. Data Coupling (communication via scalar parameters)

2. Stamp-Coupling (dependency induced by the type of structured
parameters)

3. Control Coupling (parameters are used to control the behavior of a
module)

4. Common Coupling (communication via shared global data)
5. Content Coupling (one module shares and/or changes the

definition of another nodule)
For object oriented software, the coupling has not been considered
with similar priorities. There are two main reasons for this negligence:
1. In structured design, there were few semantic guidelines to

decompose a system into smaller subsystem. Consequently,
syntactic aspects like size, coupling etc. played a major role. In
contrast, in the object-oriented para digm, the main criterion for
systems decomposition is the mapping of objects of the problem
domain into classes or subsystems in the analysis/design model,
thus reducing the relative importance of syntactic criteria.

2. Object-oriented analysis and design strive to incorporate data and
related functionality into objects. This strategy in itself certainly
reduces coupling between objects.

Therefore, explicitly controlling coupling does not seem to be as
important as in structured (especially top-down) design.
However, since employing object-oriented mechanisms in it-self does
not guarantee to really achieve minimum coupling. There is good
reason to study coupling in object-oriented systems:
1. In many cases, data or operations cannot be unambiguously

assigned to one or another class on the grounds of semantic
aspects, thus designers does need some kind of additional criteria
for such assignments.

2. Although introduction of classes as a powerful means for data
abstraction reduces the data flow between ab straction units and
therefore reduces also total coupling within a system, the number
of variants of interdependency rises in comparison to
conventional systems.

3. The principles of encapsulation and data abstraction, although
fundamental to object-orientation, may be vio lated to different
extents via the underlying programming language. This leads to
different strength of de-facto coupling which should be taken into
account.

 IJCSMS
www.ijcsms.com

48

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

Thus, coupling seems to be even more important in object-oriented
systems:

• Coupling of client objects to a server object may intro duce
change dependencies. The tighter the coupling, the harder the
effects on the clients whenever a crucial as pect of the server is
being changed.

• High coupling between two objects makes it harder to
understand one of them in isolation. In contrast, low coupling
leads to self-contained and thus easy to understand, maintainable
objects.

• High coupling also increases the probability of remote effects,
where errors in one object cause erroneous be havior of other
objects. Again, lose coupling makes it easier to track down a
certain error, which in turn im proves testability and eases
debugging.

In this paper, based on a general notion of coupling, we at tempt to
give appropriate definitions for coupling and cohe sion in object-
oriented systems and identify a collection of dimensions that should
be taken into account upon measuring these attributes. Analyzing the
effects of coupling, it turns out that these can naturally be partitioned
into two classes attributed to two different variants of coupling, namely
Object coupling, Class coupling, and method level coupling respectively.
Although our primary focus is on coupling as one of the most
important internal attributes of software project, we must necessarily
consider also cohesion because of the dual nature of these two
attributes: Attempting to optimize a design with respect to coupling
between abstractions (modules, classes, subsystems...) alone would
trivially yield to a single giant abstraction with no coupling at the
given level of ab straction. However, such an extreme solution can be
avoided by considering also the antagonistic attribute cohesion (which
would yield inadmissibly low values in the single-abstraction case).

II. PRELIMINARIES

In this section we provide some prerequisites used throughout the rest of
this paper Definition 1 clarifies some object- oriented parlance, while
the following definitions are sup posed to give a preliminary idea of
coupling in object oriented systems. These definitions will be refined in
Section B.

Definition 1 (Object oriented concepts):

We will use the terms object and class according to the usual object-
oriented terminology: A class provides the definition of structure (in-
stance variables) and behavior (methods) of similar kinds of entities,
an object is an instance of its respective class. Classes may be organized
in inheritance hierarchies as super- and sub-classes.

Definition2:

Object coupling (OC) represents the coupling (in the sense of
Definition2) resulting from state dependencies between objects during
the run-time of a system.

Definition3:

Class coupling (CC) represents the coupling resulting from
implementation dependencies in a system.

III. COUPLING

Chidamber and Kemerer also define RFC (Response for a Class) as
the union of the protocol a class offers to its clients and the protocols it
requests from other classes. Measuring the total communication
potential, this measure is obviously related to coupling and is not
independent of CBO.
Strength 1:
Accessing the interface of any server class SC, provided SC is a stable
class or features at least a stable interface, the most harmless type of
Class coupling occurs, as no change dependencies are introduced.
Strength 2:
Changing the interface of an SC method called via an object local to
one of CC's methods, only this latter method needs to be changed
correspondingly. The same argument applies to the case where SC is
the type of a parameter of a CC method.
Strength 3:
Changing the interface of an SC method in voked via a message sent
to one of CC's instance variables of class SC, due to the class scope of
instance variables, potentially all methods of CC are affected. This is
why this case is less favorable than the above.

Similarly, changing the interface of a method of the super class SC of
CC affects all methods of CC calling this super- class method. Thus,
again potentially all methods of CC may be affected.
As a global variable is accessible from all methods of a class, the
same argument applies for global variables, too.
Strengths 4 and 5: Following the same arguments as for strengths 2
and 3 and noticing that change dependencies are generally stronger
when breaching the information hiding principle, these assignments
result.

IV. COHESION

Cohesion is an important attribute corresponding to the quality of
the abstraction captured by the class under consideration. Good
abstractions typically exhibit high cohesion. The original object-
oriented cohesion metric as given by Chidamber and Kemerer (and
clarified by the same au thors) represents an inverse measure for
cohesion. They define Lack of Cohesion in Methods (LCOM) as the
number of pairs of methods operating on disjoint sets of instance
variables, reduced by the number of method pairs acting on at least
one shared instance variable6. The definition given is reproduced below:
“Consider a Class C1 with n methods M1, M2,,Mn. Let {Ij} = set of
instance variables used by Method Mj.
There are n such sets {I1}... {In}
Let P = {(Ii, Ij) | Ii∩Ij= } and∅
Q = {(Ii, Ij) | Ii∩Ij≠ }. If all n sets {I∅ 1}... {In} are then let P = .∅ ∅
LCOM = |P| - |Q|.

 IJCSMS
www.ijcsms.com

49

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

 If |P| > |Q| = 0 otherwise.
So, LCOM is 2 - 1 = 1
Although the principle idea behind this definition seems very
sensible, the resulting cohesion metric exhibits several anomalies with
respect to the intuitive understanding of the attribute, the most
important of which will be explained be low.

The LCOM Metric: Lack of Cohesion in Methods

The Lack of Cohesion in Methods metric calculations:
LCOM1:
Take each pair of methods in the class and determine the set of fields
they each access. If they have disjointed sets of field accesses, the
count R increases by one. If they share at least one field access, S
increases by one. After considering each pair of methods:

RESULT = (R > S) ? (R - S) : 0
A low value indicates high coupling between methods. This also
indicates potentially high reusability and good class design.
LCOM2:
This is an improved version of LCOM1. Say you define the following
items in a class:
me: Number of methods in a class
ac: Number of attributes in a class
meA: Number of methods that access the

attribute a
sum(meA): Sum of all meA over all the

attributes in the class
mPr: Number of private methods in a

class
mPub: Number of public methods in a
class mPro: Number of protected methods in

class
mPr+mPro): sum of all (mPr+mPro) over all the

attributes in the class
LCOM2 = 1- sum(meA)/(me*ac)
If the number of methods or variables in a class is zero (0), LCOM2 is
undefined as displayed as zero.
LCOM3:
This is another improvement on LCOM1 and LCOM2 It is defined as
follows:

LCOM3 = (me - sum(meA)/ac) / (me-1) where me, ac, meA,
sum(meA) are as defined in LCM2. The following points should be
noted about LCM3:

• The LCOM3 value varies between 0 and 2. LCOM3>1
indicates lack of cohesion and is considered a kind of alarm.

• If there is only one method in a class, LCOM 3 is undefined
and also if there are no attributes in a class LCOM3 is also
undefined and displayed as zero (0). Each of these different
measures of LCOM has a unique way to calculate the value
of LCOM.

• An extreme lack of cohesion such as LCOM3>1 indicates
that the particular class should be split into two or more
classes.

• If all the member attributes of a class are only accessed
outside of the class and never accessed within the class,
LCOM3 will show a high-value.

• A slightly high value of LCOM means that you can improve
the design by either splitting the classes or re-arranging
certain methods within a set of classes.

LCOM5: This is another improvement on LCOM,LCOM2 and
LCOM3 It is defined as follows:

LCOM4 = (me – [sum(meA) –sum (mPr+mPro)]/ac) / (me-1)
where me, ac, meA, sum(meA),mPr, mPub, mPro are as defined in
LCOM2.

V. CONCLUSIONS AND FUTURE WORK

Having introduced a framework for a comprehensive metric for
coupling in object-oriented systems on both, object and class levels, we
were able to identify a basic ordinal metric for the contribution certain
elementary constructs provide to coupling.
As an application of the framework, consider the trade-off discussed in
this paper, namely, if using a (non-native) object is preferable to
containing an object. Denoting the class of such an object by X, we
find from LCOM5 of our framework that if X is stable, accessing an
instance variable of this type X yields coupling strength 1 for the
containing case.
Several open problems remain to be solved:
To achieve consistent and satisfying results, empirical data obtained
from real-life software engineering projects need be analyzed with
respect to the influence of the metrics proposed on external product
attributes. This applies as well to the cohesion measures presented.

ACKNOWLEDGMENT

The authors would like to thank Dr.S.D.Joshi for several fruitful
discussions.

REFERENCES

[1] L.C. Briand, S. Morasca, and V.R. Basili, “Property-Based Software
Engineering Measurements,” IEEE Trans. Software Eng., vol. 22, no. 1, pp.
68-85, Jan. 1996.

[2] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia, “Identifying the
Starting Impact Set of a Maintenance and Reengineering”, Proc. Fourth
European Conf. Software Maintenance, pp. 227-230.

[3] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo,
“Recovering Traceability Links between Code and Documentation,” IEEE

 IJCSMS
www.ijcsms.com

50

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

Trans. Software Eng., vol. 28, no. 10, pp. 970-983, Oct. 2002.

[4] E. Arisholm, L.C. Briand, and A. Foyen, “Dynamic Coupling
Measurement for Object-Oriented Software,” IEEE Trans. Software Eng.,
vol. 30, no. 8, pp. 491-506, Aug. 2004.

[5] J. Bansiya and C.G. Davis, “A Hierarchical Model for Object- Oriented
Design Quality Assessment,” IEEE Trans. Software Eng., vol. 28, no. 1, pp.
4-17, Jan. 2002.

[6] V.R. Basili, L.C. Briand, and W.L. Melo, “A Validation of Object-
Oriented Design Metrics as Quality Indicators,” IEEE Trans. Software Eng.,
vol. 22, no. 10, pp. 751-761, Oct. 1996.

[7]M.W. Berry, “Large Scale Singular ValueComputations,” Int’lJ
Supercomputer Applications, vol. 6, pp. 13-49, 1992

[8] J. Bieman and B.K. Kang, “Cohesion and Reuse in an Object- Oriented
System,” Proc. Symp. Software Reusability, pp. 259-262, Apr. 1995.

[9] L. Briand, W. Melo, and J. Wust, “Assessing the Applicability of Fault-
Proneness Models Across Object-Oriented Software Projects,” IEEE Trans.
Software Eng., vol. 28, no. 7, pp. 706-720, July 2002.

[10] L.C. Briand, J.W. Daly, V. Porter, and J. Wu¨ st, “A Comprehensive
Empirical Validation of Design Measures for Object-Oriented Systems,”
Proc. Fifth IEEE Int’l Software Metrics Symp, pp. 43-53, Nov. 1998

[11] L.C. Briand, J.W. Daly, and J. Wu¨ st, “A Unified Framework for
Cohesion Measurement in Object-Oriented Systems,” Empirical Software
Eng., vol. 3, no. 1, pp. 65-117, 1998.

 IJCSMS
www.ijcsms.com

51

