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                                       Abstract  
Multiprocessor task scheduling (MPTS) is an important and 
computationally difficult problem. Multiprocessors have emerged 
as a powerful computing means for running real-time applications 
especially due to limitation of uni-processor system for not having 
sufficient enough capability to execute all the tasks. This paper 
describes multiprocessor task scheduling in the form of 
permutation flow shop scheduling, which has an objective 
function for minimizing the makespan. Here, we will conclude 
how the performance of genetic algorithms (value of the makespan 
of the schedule) varies with the variation of Genetic Algorithm 
(GA) control parameters (population size, crossover probability 
and mutation probability). 
Keywords: Genetic Algorithm (GA), crossover, mutation, 
Multiprocessor task scheduling (MPTS), permutation flow shop 
scheduling 
 
1. INTRODUCTION 
 
Multiprocessor task scheduling problem is a generalization 
of the classical machine scheduling problem by allowing 
tasks to be processed on more than one processor at a time 
and it is motivated mainly by computer systems. We 
consider multiprocessor task scheduling problems in flow-
shop environments. The permutation flow shop scheduling 
problem (PFSP) is a special case of flow shop problem 
where the processing order of the jobs is same on all the 
processors. 
In solving the problem of scheduling n jobs on m 
processors, the objective is to minimize the make span (i.e. 
completion time C of the latest job) of the processor.  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
To minimize the make span, the elementary criterion is the 
time, when processor finishes the last job   
i.e. 

 
 
 

 

 
The work is based on the deterministic model that is the 
number of processors, the execution time of tasks is known 
in advance. In addition, the communication cost between 
two tasks is considered to be negligible and the 
multiprocessor system is non-preemptive that is the 
processors are homogeneous and each processor completes 
the current task before the new one starts its execution  
 
2. ASSUMPTIONS  
 
• All the jobs and machines are available at time Zero.   
• Pre-emption is not allowed.   
• Machines never break down.  
 
• All processing time on the machine are known, 

deterministic, finite and dependent of sequence of the 
jobs to be processed.  

 
• Each machine is continuously available for assignment.  
 
• The first machine is assumed to be ready whichever 

and whatever job is to be processed on it first.  
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• Machines may be idle  
 
• Splitting of job or job cancellation is not allowed.   
• In-process inventory is allowed. If the next machine on 

the sequence needed by a job is not available, the job 
can wait and joins the queue at that machine.  

 
The permutation flowshop represents a particular case of 
the flowshop scheduling problem, having as goal the 
deployment of an optimal schedule for n jobs on m 
machines. 

 
As a consequence, for the permutation flowshop problem, 
considering the makespan as objective function to be 
minimized, solving the problem means determining the 
permutation which gives the smallest makespan value. 
 
 
 
 
 
 
 
 
Fig: 1 Permutation flow shop scheduling 
 
 

III. GENETIC ALGORITHM 
 
A. WORKING PRINCIPLE OF A SIMPLE GA   
1. Begin   
2. INITIALIZE population with random candidate 

solutions;   
3. EVALUAE each candidate:   
4. REPEAT UNTIL (TERMINATION CONDITION is 

satisfied)   
5. DO   

a. SELECT parents;   
b. RECOMBINE pairs of parents;   

               c.    MUTATE the resulting offspring; 
               d.    EVALUATE new candidate;   

 e.    SELECT individuals for the next generation;   
6. DO   
7. END  

 
B.   CONTROL PARAMETERS  

 
The control parameters are crossover probability Pc, 
mutation probability, Pm, and population size that led to 
the best results.  
The number of individuals with the best fitness values in 
the current generation that are guaranteed to survive to 
the next generation. These individuals are called elite 

children. Setting Elite count to a high value causes the 
fittest individuals to dominate the population, which can 
make the search less effective. 

 
C.   CODING OF SOLUTION 

 
Here, Permutation encoding is used. Each task is present 
and appears only once in the schedule. A schedule is 
represented as a list of tasks executed on a processor and 
order of tasks in the list indicates the order of execution. 

 
D.   POPULATION INITIALIZATION  

 
Genetic algorithm (GA) is inspired by Darwin’s theory 
about evolution- the “survival-of-the fittest”. It is the way 
of solving problems by mimicking processes used by 
nature: selection, crossover, mutation and accepting to 
evolve a solution to a problem. 
 
WORKING PRINCIPLE OF A SIMPLE GA  
 

1 Begin   
2 INITIALIZE population with random candidate 
solutions;   
3 EVALUAE each candidate:   
4 REPEAT UNTIL (TERMINATION CONDITION is 
satisfied)   
5 DO   

i. SELECT parents;   
ii. RECOMBINE pairs of parents;   

          iii.       MUTATE the resulting offspring; 
 
The next step in the GAs is the creation of the initial 

population. Number of processors, number of tasks and 
population size are required to generate initial population. 
The initial population consists of randomly generated 
individuals. The population size kept constant through the 
generations. A string of an integer represents the tasks is 
used to represent a schedule The population contains 
solution vectors called individuals of the population and 
each vector represents potential solution for the 
optimization problem. Many individual solutions are 
randomly generated to form an initial population. 
 
E.   FITNESS VALUE 

 
The fitness of an individual is defined by make span of all 
the processors (i.e. completion time C of the latest job). To 
minimizing the make span, the elementary criterion is the 
time, when processor finishes the last job [6].  
i.e., 
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Individuals from the current population are selected based 
on their fitness and a mating pool is created for the 
reproduction stage. 

 
F.    SELECTION OPERATOR 

 
The design of the fitness function is the basic of selection 

operation, the design of the fitness function will directly 
affect the performance of genetic algorithm. GAs uses 
selection operator to select the superior and eliminate the 
inferior. The individuals are selected according to their 
fitness value. Once fitness values have been evaluated for 
all chromosomes, good chromosomes can be selected 
through rotating roulette wheel strategy. This operator 
generate next generation by selecting best chromosomes 
from parents and offspring. 
 
G.   CROSSOVER OPERATOR 

 
Crossover operator randomly selects two parent 
chromosomes (chromosomes with higher values have more 
chance to be selected) and randomly chooses their 
crossover points and mates them to produce two child 
(offspring) chromosomes. Here, two-point crossover 
operator PMX (Partially Matched Crossover) is used.  
In PMX crossover, all positions are found exactly once in 
each offspring. 
H.   MUTATION  
It ensures that the probability of finding the optimal 
solution is never zero. It also acts as a safety net to recover 
good genetic material that may be lost through selection and 
crossover. An inversion mutation operator is used here in 
the work. 
 
IV. COMPUTATIONAL EXPERIMENTS 
 
In our computational study, we aim to analyze the 
performance of genetic algorithm in minimizing the make 
span of the processor. Furthermore, we also investigate the 
effects of varying control parameters of the GA on the 
performance of genetic algorithms. GA algorithm is 
implemented using MATLAB at command line.  
We have implemented MPTS (in permutation flow shop 
scheduling). 

 
Example:  No of processor=4, No of jobs=15 

 
Following table describes the time taken by the job on a 
particular processor. 
 

 
The make span for the different feasible schedules of the 
jobs in a generation is computed using fitness function. 

 
GA termination results in a schedule of the jobs with 
minimum make span value in the latest generation of the 
schedules. 

 
In MATLAB, we have to specify crossover probability and 
elite count (the number of individuals with the best fitness 
values in the current generation that are guaranteed to 
survive to the next generation.). The individuals of the 
population are from crossover kids and elite kids, mutated 
kids. The no of mutated kids are counted automatically in 
MATLAB.  
No of mutated kids= population size - (Z1+Z2) Where  
Z1 = Population size - Elite count 
Z2 = (Z1*Pc) 

(Where Pc is crossover probability.) 

 
The efficiency of genetic algorithm is closely related to 
control parameters. In our experiments, we have tested the 
performance of genetic algorithms for these parameters 
such as 
 
The efficiency of genetic algorithm is closely related to 
control parameters. In our experiments, we have tested the 
performance of genetic algorithms for these parameters 
such as population size, the crossover probability (Pc) and 
the mutation probability (Pm). 

 
Following experiments shows effect of variation of GA 
parameters on its performance. 

 
A. Following table shows the effect of variation of 

population size on the performance of genetic 
algorithms in permutation flow shop scheduling  

 
Parameter settings are: 
 

CROSSOVER PROBABILITY 0.6 

ELITE COUNT 2 

NO OF GENERATIONS 100 

TIME LIMIT INFINITE 

FITNESS LIMIT INFINITE 

STALL GENERATION LIMIT INFINITE 

STALL TIME LIMIT INFINITE 

 
Results taken are: 
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POP_SIZE Make Make Make 
 Span Span Span 

 Run#1 Run#2 Run#3 

50 108 109 107 

100 105 107 105 

150 104 105 105 

200 105 105 105 

250 105 104 105 

300 104 105 104 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig 2: Effect of population size on GA Performance 

 
Here, we can observe, for our problem MPTS (in 
permutation flow shop scheduling), as the population size 
increases, the GA performs better 
 
(i.e. value of make span decreases). So we can say, 
increasing the population size enables the genetic algorithm 
to search more points and thereby obtain a better result. 

 
B. Following table shows the effect of variation of 

crossover rate on the performance of genetic 
algorithms in permutation flow shop scheduling.  

 
Parameter settings are:  

 

POPULATION SIZE 100 

ELITE COUNT 2 

NO OF GENERATIONS 100 

TIME LIMIT INFINITE 

FITNESS LIMIT INFINITE 

STALL GENERATION LIMIT INFINITE 

STALL TIME LIMIT INFINITE 

 

Results taken are: 

Crossover  Make Make 
Probability Make Span Span Span 

 Run#1 Run#2 Run#3 

0.1 105 107 105 

0.2 105 105 104 

0.3 105 105 105 

0.4 105 105 105 

0.5 105 105 105 

0.6 104 104 105 

0.7 105 105 106 

0.8 106 107 104 

0.9 107 107 106 

1 107 107 108 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 3: Effect of crossover Probability on GA Performance 

The genetic algorithm minimizes the fitness function. 
Here, we can observe, for our problem MPTS (in 
permutation flow shop scheduling), as the as the crossover 
probability increases till 0.6, the GA performs better (i.e. 
value of make span decreases), but after crossover 
probability 0.6, the performance of GA degrades. So we 
can say, for this fitness function, setting Crossover 
fraction to 0.6 yields the best result. 

 
C. Following table shows the effect of variation of Elite Count 

on the performance of genetic algorithms in permutation 
flow shop scheduling. 

 
Parameter settings are: 

POPULATION SIZE 100 

CROSSOVER PROBABILITY 0.6 

NO OF GENERATIONS 100 

TIME LIMIT INFINITE 
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FITNESS LIMIT INFINITE 

STALL GENERATION LIMIT INFINITE 

STALL TIME LIMIT INFINITE 

 
Results taken are: 

Elite Make Make Make 
count Span Span Span 

 Run#1 Run#2 Run#3 

2 104 104 105 

3 107 105 105 

4 104 105 105 

5 105 108 105 

6 105 104 104 

7 105 105 106 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig 4: Effect of elite count on GA Performance 
Since the genetic algorithm minimizes the fitness function. 
Here, for our problem MPTS (in permutation flow shop 
scheduling), as the value of elite count increases, the 
performance of GA degrades (i.e. value of make span 
increases). So we can say, setting Elite count to a high 
value makes the search less effective. 
 
V. CONCLUSION 

 
In this paper, we have implemented a genetic algorithm for 
MPTS in permutation flow shop scheduling environment, 
where the processing order of the jobs is same on all the 
processors. Genetic Algorithms is applied for the solution 
of this problem. We evaluate the performance of the GA 
(on minimize maximum make span of the processor) with 
the variation of its control parameters. Here we have 
concluded that:  

A. Increasing the population size enables the genetic 
algorithm to search more points and thereby obtain a 
better result.  

B. For a fitness function, a setting for Crossover 
probability can yield the best result. The genetic 
algorithm minimizes the fitness function.   

C. Setting Elite count to a high value causes the fittest 
individuals to dominate the population, which makes 
the search less effective.  
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