|JCSM S International Journal of Computer Science and M anagement Studies, Vol. 11, Issue 02, Aug 2011

| SSN (Online): 2231-5268
WWW.ij csms.com

181

GENETIC ALGORITHM FOR
MULTIPROCESSOR TASK SCHEDULING

'Ritu Verma, 2Sunita Dhingra

'Deptt of CSE, UIET, MDU, Rohtak(India)
ritufbd@gmail.com

Deptt of CSE, UIET, MDU, Rohtak(l ndia)

Abstract
Multiprocessor task scheduling (MPTS) is an impartand
computationally difficult problem. Multiprocessonsive emerged
as a powerful computing means for running real-tapplications
especially due to limitation of uni-processor sygstier not having
sufficient enough capability to execute all theksasThis paper
describes multiprocessor task scheduling in themfoof
permutation flow shop scheduling, which has an dhbje
function for minimizing the makespan. Here, we vatinclude
how the performance of genetic algorithms (valuthefmakespan
of the schedule) varies with the variation of Genétigorithm
(GA) control parameters (population size, crossgwebability
and mutation probability).
Keywords: Genetic Algorithm (GA), crossover, mutation,
Multiprocessor task scheduling (MPTS), permutation flow shop
scheduling

1. INTRODUCTION

Multiprocessor task scheduling problem is a geiwatbn

of the classical machine scheduling problem bywdlig
tasks to be processed on more than one procesadiné
and it is motivated mainly by computer systems. We
consider multiprocessor task scheduling problem#onv-
shop environments. The permutation flow shop sclivegiu
problem (PFSP) is a special case of flow shop probl
where the processing order of the jobs is samellothe
processors.

In solving the problem of scheduling n jobs on m
processors, the objective is to minimize the madangi.e.
completion time C of the latest job) of the process

To minimize the make span, the elementary criteigotie
time, when processor finishes the last job
i.e.

make span = min 1{ma xC),-}
sjeSched

The work is based on the deterministic model thathie
number of processors, the execution time of tasksown

in advance. In addition, the communication costveen
two tasks is considered to be negligible and the
multiprocessor system is non-preemptive that is the
processors are homogeneous and each processoretesnpl
the current task before the new one starts itsutixet

2. ASSUMPTIONS

» All the jobs and machines are available at timeoZer
e Pre-emption is not allowed.
* Machines never break down.

e All processing time on the machine are known,
deterministic, finite and dependent of sequencéhef
jobs to be processed.

» Each machine is continuously available for assigmme

e The first machine is assumed to be ready whichever
and whatever job is to be processed on it first.

[JCSMS
WWW.ij cSms.com

|JCSM S International Journal of Computer Science and M anagement Studies, Vol. 11, Issue 02, Aug 2011

| SSN (Online): 2231-5268
WWW.ij csms.com

* Machines may be idle
» Splitting of job or job cancellation is not allowed
* In-process inventory is allowed. If the next maeham

the sequence needed by a job is not availablejothe
can wait and joins the queue at that machine.

The permutation flowshop represents a particulae oaf
the flowshop scheduling problem, having as goal the
deployment of an optimal schedule for n jobs on m
machines.

As a consequence, for the permutation flowshop lprob
considering the makespan as objective function ¢ b
minimized, solving the problem means determining th
permutation which gives the smallest makespan value

A

=
£

w

Machines

®

=

-

. .‘——
Execution time

Fig: 1 Permutation flow shop scheduling

[11. GENETIC ALGORITHM

A. WORKING PRINCIPLE OF A SIMPLE GA

1. Begin

2. INITIALIZE population
solutions;

3. EVALUAE each candidate:

4. REPEAT UNTIL (TERMINATION CONDITION is
satisfied)

5. DO

with random candidate

a. SELECT parents;
b. RECOMBINE pairs of parents;
c. MUTATE the resulting offspring
d. EVALUATE new candidate;
e. SELECT individuals for the next generation;
6. DO
7. END

B. CONTROL PARAMETERS

The control parameters are crossover probability P
mutation probability, R and population size that led to
the best results.

The number of individuals with the best fithessuesl in
the current generation that are guaranteed to \suna
the next generation. These individuals are callkid e

182

children. Setting Elite count to a high value cautiee
fittest individuals to dominate the population, atican
make the search less effective.

C. CODING OF SOLUTION

Here, Permutation encoding is used. Each taskesept
and appears only once in the schedule. A schedule i
represented as a list of tasks executed on a Eocesd
order of tasks in the list indicates the orderxdaution.

D. POPULATION INITIALIZATION

Genetic algorithm (GA) is inspired by Darwin’s thgo
about evolution- the “survival-of-the fittest”. i¢ the way

of solving problems by mimicking processes used by
nature: selection, crossover, mutation and acogpton
evolve a solution to a problem.

WORKING PRINCIPLE OF A SIMPLE GA

1 Begin

2 INITIALIZE population with random candidate
solutions;

3 EVALUAE each candidate:

4 REPEAT UNTIL (TERMINATION CONDITION is
satisfied)
5DO

i. SELECT parents;

i. RECOMBINE pairs of parents;

iii. MUTATE the resulting offspring

The next step in the GAs is the creation of theiahi
population. Number of processors, number of tagkd a
population size are required to generate initighybation.
The initial population consists of randomly genedat
individuals. The population size kept constant tigto the
generations. A string of an integer representstasés is
used to represent a schedule The population caentain
solution vectors called individuals of the popuwatiand
each vector represents potential solution for the
optimization problem. Many individual solutions are
randomly generated to form an initial population.

E. FITNESS VALUE

The fitness of an individual is defined by makerspé all
the processors (i.e. completion time C of the tgtds). To
minimizing the make span, the elementary critei®the
time, when processor finishes the last job [6].

ie.,

make span = 1111119:Esmm{max£'j]

[JCSM S
WWW.ij csSms.com

|JCSM S International Journal of Computer Science and M anagement Studies, Vol. 11, Issue 02, Aug 2011

| SSN (Online): 2231-5268
WWW.ij csms.com

Individuals from the current population are seldcbased
on their fitness and a mating pool is created foe t
reproduction stage.

F. SELECTION OPERATOR

The design of the fitness function is the basiceagction
operation, the design of the fitness function wditectly
affect the performance of genetic algorithm. GAsus
selection operator to select the superior and ehiei the
inferior. The individuals are selected according their
fitness value. Once fitness values have been eealuar

all chromosomes, good chromosomes can be selected

through rotating roulette wheel strategy. This apar
generate next generation by selecting best chromeso
from parents and offspring.

G. CROSSOVER OPERATOR

Crossover operator randomly selects two parent
chromosomes (chromosomes with higher values hawve mo
chance to be selected) and
crossover points and mates them to produce twad chil
(offspring) chromosomes. Here, two-point crossover
operator PMX (Partially Matched Crossover) is used.

In PMX crossover, all positions are found exactig®in

each offspring.

H. MUTATION

It ensures that the probability of finding the ol
solution is never zero. It also acts as a safetyaescover
good genetic material that may be lost throughctiele and
crossover. An inversion mutation operator is usetkehn
the work.

IV.COMPUTATIONAL EXPERIMENTS

In our computational study, we aim to analyze the
performance of genetic algorithm in minimizing timake
span of the processor. Furthermore, we also irgastithe
effects of varying control parameters of the GA the
performance of genetic algorithms. GA algorithm is
implemented using MATLAB at command line.

We have implemented MPTS (in permutation flow shop
scheduling).

Example: No of processor=4, No of jobs=15

Following table describes the time taken by thegola
particular processor.

0B —=>
PROCESSOR
i

2 [3|4 10)11)12)13(14|1

3(10] 5 (10

wn

@ | =

—
=1

10 (10) 8

w [w |w|w

@
(=]
-
o

10

=t | [
I P - el]
w|w | |w e
Rl R R =]
w
w|um|o |w
@
| |e |
w|w
w |||

2
3
4 10 i} 10] 2

—
=1

randomly chooses their

183

The make span for the different feasible schedafethe
jobs in a generation is computed using fitnesstfanc

GA termination results in a schedule of the jobghwi
minimum make span value in the latest generatiothef
schedules.

In MATLAB, we have to specify crossover probabiliapd
elite count (the number of individuals with the bihess
values in the current generation that are guardntee
survive to the next generation.). The individuafstioe

population are from crossover kids and elite kidsitated
kids. The no of mutated kids are counted automtioa

MATLAB.

No of mutated kids= population size - (Z1+22) Where

Z1 = Population size - Elite count
Z2 = %Zl*Pc%_ .
(Where Ris crossover probability.)

The efficiency of genetic algorithm is closely teld to
control parameters. In our experiments, we havedethe
performance of genetic algorithms for these paramset
such as

The efficiency of genetic algorithm is closely teld to
control parameters. In our experiments, we havedethe
performance of genetic algorithms for these paramset
such as population size, the crossover probalfiity and
the mutation probability (B.

Following experiments shows effect of variationGA
parameters on its performance.

A. Following table shows the effect of variation of
population size on the performance of genetic
algorithms in permutation flow shop scheduling

Parameter settings are:

CROSSOVER PROBABILITY 0.6

ELITE COUNT 2

NO OF GENERATIONS 100

TIME LIMIT INFINITE

FITNESS LIMIT INFINITE

STALL GENERATION LIMIT INFINITE

STALL TIME LIMIT INFINITE
Results taken are:

IJCSM S

WWW.ij csSms.com

|JCSM S International Journal of Computer Science and M anagement Studies, Vol. 11, Issue 02, Aug 2011 184
| SSN (Online): 2231-5268
WWW.ij csms.com
POP_SIZE | Make | Make Make Results taken are:
Span Span Span Crossover Make Make
Run#l | Run#2 Run#3 Probability Make Span Span Span
50 108 109 107 Run#1 Run#2 Run#3
100 105 107 105 0.1 105 107 105
150 104 105 105 0.2 105 105 104
200 105 105 105 0.3 105 105 105
250 105 104 105 0.4 105 105 105
300 104 105 104 05 105 105 105
0.6 104 104 105
= 0.7 105 105 106
109 +—
e | ok 0.8 106 107 104
€ 107 QN \\ 0.9 107 107 106
= 106 \\\‘\
105 \ \ . =—f=—Run#l 1 107 107 108
; i M wfl=Runt2
A 103 i R LIS 100
N 102 w108
101 A g7 '/"_p
50 100 150 200 250 300 K
E 106 -
POPULATION SIZE 3 105 4 == Make Span Runsl
P Make Span Run#2
: 104 : - i 1z ke Span RUNE3
Fig 2: Effect of population size on GA Performance =
102
1 2 3 4 5 6 7 B 2 10
Here, we can observe, for our problem MPTS (in CROSSOVER PROBABILITY

permutation flow shop scheduling), as the popufatze
increases, the GA performs better

(i.,e. value of make span decreases). SO we can say,
increasing the population size enables the gealgrithm

to search more points and thereby obtain a betsetr

B. Following table shows the effect of variation of
the performance of genetic

crossover rate on

algorithms in permutation flow shop scheduling.

Parameter settings are:

POPULATION SIZE 100
ELITE COUNT 2

NO OF GENERATIONS 100
TIME LIMIT INFINITE
FITNESS LIMIT INFINITE
STALL GENERATION LIMIT INFINITE
STALL TIME LIMIT INFINITE

Fig 3: Effect of crossover Probability on GA Perfance
The genetic algorithm minimizes the fithess funttio

Here, we can observe, for our problem MPTS (in
permutation flow shop scheduling), as the as tbesaver
probability increases till 0.6, the GA performstbet(i.e.
value of make span decreases), but after crossover
probability 0.6, the performance of GA degrades.w#&o

can say, for this fitness function, setting Crossov
fraction to 0.6 yields the best result.

C. Following table shows the effect of variationite Count
on the performance of genetic algorithms in pertima
flow shop scheduling.

Parameter settings are:

POPULATION SIZE 100

CROSSOVER PROBABILITY 0.6

NO OF GENERATIONS 100

TIME LIMIT INFINITE
[JCSMS

WWW.ij csSms.com

|JCSM S International Journal of Computer Science and M anagement Studies, Vol. 11, Issue 02, Aug 2011

| SSN (Online): 2231-5268
WWW.ij csms.com

FITNESS LIMIT INFINITE
STALL GENERATION LIMIT INFINITE
STALL TIME LIMIT INFINITE
Results taken are:
Elite Make Make Make
count Span Span Span
Run#1 Run#2 Run#3
2 104 104 105
3 107 105 105
4 104 105 105
5 105 108 105
6 105 104 104
7 105 105 106
109
M 108
‘: 107 —
E igg A

== lake Span Runsl
105 + —
104 T

103

Make Span Run#2

i [2ke Span RUNE3

Z = T

102

ELITE COUNT

Fig 4: Effect of elite count on GA Performance

Since the genetic algorithm minimizes the fithasscfion.
Here, for our problem MPTS (in permutation flow pho
scheduling), as the value of elite count increaghs,
performance of GA degrades (i.e. value of make span
increases). SO we can say, setting Elite count tagha
value makes the search less effective.

V.CONCLUSION

In this paper, we have implemented a genetic alyorfor
MPTS in permutation flow shop scheduling environtmen
where the processing order of the jobs is samellotihea
processors. Genetic Algorithms is applied for tbiitson
of this problem. We evaluate the performance of @#e
(on minimize maximum make span of the processoth wi
the variation of its control parameters. Here werseha
concluded that:

A. Increasing the population size enables the genet

algorithm to search more points and thereby olsain
better result.

185

B. For a fitness function, a setting for Crossover
probability can yield the best result. The genetic
algorithm minimizes the fitness function.

C. Setting Elite count to a high value causes theditt
individuals to dominate the population, which makes
the search less effective.

VI. REFERENCES

[1] Zbigniew Michalewicz, “Genetic Algorithms + Data
Structures=Evolution Programs”, Springer-verlagcBcal genetic
algorithms By Randy L. Haupt, S. E. Haupt

[2] MATLAB TUTORIAL by Edward Kamen and Bonnie Heck,
published by Prentice Hall

[3] MATLAB by RUDRA PRATAP, tenth edition, published t&yxford
University Press

[4]1 Michalewicz, Z. and Attia, N., “Evolutionai®ptimization of
Constrained Problems. In Sebald, A. ancekdg (Eds.), Annual
Conference on

[5] EvolutionaryProgramming, World Scientific Publisbin 1994
Kamaljit Kaur, Amit Chhabra and Gurvinder Singh012, Modified
Genetic Algorithm for Task Scheduling in HomogenedRarallel
System Using Heuristics proceeding of Internatialmlrnal of Soft
Computing Vol. 5, Issue: 2,Page No.: 42-51

[6] Javier Carretero, Fatos XhafaAjith Abraham, “GENETI
ALGORITHM BASED SCHEDULERS FOR GRID COMPUTING
SYSTEMS” published in International Journal of Inatve,
Computing, Information and Control, Volume 3, Numbé,
December 2007.

[7] Prof. Sanjay R Sutar, Jyoti P. Sawant, Jyoti R.hdad, Task
Scheduling For Multiprocessor Systems Using Memglgorithms

[8] Sachi Gupta, Gaurav Agarwal, Vikas Kumar, Task Saheg in
Multiprocessor System Using Genetic Algorithm, 208@cond
International Conference on Machine Learning anth@ding

[9] EL-REWINI, H., ALl, H. H.,, AND LEWIS, T. G.1995. Tsk
scheduling in multiprocessor systems. IEEE Computer

[10] ALL, S., SAIT, S. M., AND BENTEN, M. S. T. 199GSA:
Scheduling and allocation using genetic itlgom. In Proceedings of
the Conference on EURO-DAC

[JCSM S
WWW.ij csSms.com

