
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

181

GENETIC ALGORITHM FORGENETIC ALGORITHM FORGENETIC ALGORITHM FORGENETIC ALGORITHM FOR

MULTIPROCESSOR TASK SCHEDULINGMULTIPROCESSOR TASK SCHEDULINGMULTIPROCESSOR TASK SCHEDULINGMULTIPROCESSOR TASK SCHEDULING

 11Ritu Verma, 22Sunita Dhingra

11Deptt of CSE, UIET, MDU, Rohtak(India)
 ritufbd@gmail.com

22Deptt of CSE, UIET, MDU, Rohtak(India)

 Abstract
Multiprocessor task scheduling (MPTS) is an important and
computationally difficult problem. Multiprocessors have emerged
as a powerful computing means for running real-time applications
especially due to limitation of uni-processor system for not having
sufficient enough capability to execute all the tasks. This paper
describes multiprocessor task scheduling in the form of
permutation flow shop scheduling, which has an objective
function for minimizing the makespan. Here, we will conclude
how the performance of genetic algorithms (value of the makespan
of the schedule) varies with the variation of Genetic Algorithm
(GA) control parameters (population size, crossover probability
and mutation probability).
Keywords: Genetic Algorithm (GA), crossover, mutation,
Multiprocessor task scheduling (MPTS), permutation flow shop
scheduling

1. INTRODUCTION

Multiprocessor task scheduling problem is a generalization
of the classical machine scheduling problem by allowing
tasks to be processed on more than one processor at a time
and it is motivated mainly by computer systems. We
consider multiprocessor task scheduling problems in flow-
shop environments. The permutation flow shop scheduling
problem (PFSP) is a special case of flow shop problem
where the processing order of the jobs is same on all the
processors.
In solving the problem of scheduling n jobs on m
processors, the objective is to minimize the make span (i.e.
completion time C of the latest job) of the processor.

To minimize the make span, the elementary criterion is the
time, when processor finishes the last job
i.e.

The work is based on the deterministic model that is the
number of processors, the execution time of tasks is known
in advance. In addition, the communication cost between
two tasks is considered to be negligible and the
multiprocessor system is non-preemptive that is the
processors are homogeneous and each processor completes
the current task before the new one starts its execution

2. ASSUMPTIONS

• All the jobs and machines are available at time Zero.
• Pre-emption is not allowed.
• Machines never break down.

• All processing time on the machine are known,

deterministic, finite and dependent of sequence of the
jobs to be processed.

• Each machine is continuously available for assignment.

• The first machine is assumed to be ready whichever

and whatever job is to be processed on it first.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

182

• Machines may be idle

• Splitting of job or job cancellation is not allowed.
• In-process inventory is allowed. If the next machine on

the sequence needed by a job is not available, the job
can wait and joins the queue at that machine.

The permutation flowshop represents a particular case of
the flowshop scheduling problem, having as goal the
deployment of an optimal schedule for n jobs on m
machines.

As a consequence, for the permutation flowshop problem,
considering the makespan as objective function to be
minimized, solving the problem means determining the
permutation which gives the smallest makespan value.

Fig: 1 Permutation flow shop scheduling

III. GENETIC ALGORITHM

A. WORKING PRINCIPLE OF A SIMPLE GA
1. Begin
2. INITIALIZE population with random candidate

solutions;
3. EVALUAE each candidate:
4. REPEAT UNTIL (TERMINATION CONDITION is

satisfied)
5. DO

a. SELECT parents;
b. RECOMBINE pairs of parents;

 c. MUTATE the resulting offspring;
 d. EVALUATE new candidate;

 e. SELECT individuals for the next generation;
6. DO
7. END

B. CONTROL PARAMETERS

The control parameters are crossover probability Pc,
mutation probability, Pm, and population size that led to
the best results.
The number of individuals with the best fitness values in
the current generation that are guaranteed to survive to
the next generation. These individuals are called elite

children. Setting Elite count to a high value causes the
fittest individuals to dominate the population, which can
make the search less effective.

C. CODING OF SOLUTION

Here, Permutation encoding is used. Each task is present
and appears only once in the schedule. A schedule is
represented as a list of tasks executed on a processor and
order of tasks in the list indicates the order of execution.

D. POPULATION INITIALIZATION

Genetic algorithm (GA) is inspired by Darwin’s theory
about evolution- the “survival-of-the fittest”. It is the way
of solving problems by mimicking processes used by
nature: selection, crossover, mutation and accepting to
evolve a solution to a problem.

WORKING PRINCIPLE OF A SIMPLE GA

1 Begin
2 INITIALIZE population with random candidate
solutions;
3 EVALUAE each candidate:
4 REPEAT UNTIL (TERMINATION CONDITION is
satisfied)
5 DO

i. SELECT parents;
ii. RECOMBINE pairs of parents;

 iii. MUTATE the resulting offspring;

The next step in the GAs is the creation of the initial

population. Number of processors, number of tasks and
population size are required to generate initial population.
The initial population consists of randomly generated
individuals. The population size kept constant through the
generations. A string of an integer represents the tasks is
used to represent a schedule The population contains
solution vectors called individuals of the population and
each vector represents potential solution for the
optimization problem. Many individual solutions are
randomly generated to form an initial population.

E. FITNESS VALUE

The fitness of an individual is defined by make span of all
the processors (i.e. completion time C of the latest job). To
minimizing the make span, the elementary criterion is the
time, when processor finishes the last job [6].
i.e.,

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

183

Individuals from the current population are selected based
on their fitness and a mating pool is created for the
reproduction stage.

F. SELECTION OPERATOR

The design of the fitness function is the basic of selection

operation, the design of the fitness function will directly
affect the performance of genetic algorithm. GAs uses
selection operator to select the superior and eliminate the
inferior. The individuals are selected according to their
fitness value. Once fitness values have been evaluated for
all chromosomes, good chromosomes can be selected
through rotating roulette wheel strategy. This operator
generate next generation by selecting best chromosomes
from parents and offspring.

G. CROSSOVER OPERATOR

Crossover operator randomly selects two parent
chromosomes (chromosomes with higher values have more
chance to be selected) and randomly chooses their
crossover points and mates them to produce two child
(offspring) chromosomes. Here, two-point crossover
operator PMX (Partially Matched Crossover) is used.
In PMX crossover, all positions are found exactly once in
each offspring.
H. MUTATION
It ensures that the probability of finding the optimal
solution is never zero. It also acts as a safety net to recover
good genetic material that may be lost through selection and
crossover. An inversion mutation operator is used here in
the work.

IV. COMPUTATIONAL EXPERIMENTS

In our computational study, we aim to analyze the
performance of genetic algorithm in minimizing the make
span of the processor. Furthermore, we also investigate the
effects of varying control parameters of the GA on the
performance of genetic algorithms. GA algorithm is
implemented using MATLAB at command line.
We have implemented MPTS (in permutation flow shop
scheduling).

Example: No of processor=4, No of jobs=15

Following table describes the time taken by the job on a
particular processor.

The make span for the different feasible schedules of the
jobs in a generation is computed using fitness function.

GA termination results in a schedule of the jobs with
minimum make span value in the latest generation of the
schedules.

In MATLAB, we have to specify crossover probability and
elite count (the number of individuals with the best fitness
values in the current generation that are guaranteed to
survive to the next generation.). The individuals of the
population are from crossover kids and elite kids, mutated
kids. The no of mutated kids are counted automatically in
MATLAB.
No of mutated kids= population size - (Z1+Z2) Where
Z1 = Population size - Elite count
Z2 = (Z1*Pc)

(Where Pc is crossover probability.)

The efficiency of genetic algorithm is closely related to
control parameters. In our experiments, we have tested the
performance of genetic algorithms for these parameters
such as

The efficiency of genetic algorithm is closely related to
control parameters. In our experiments, we have tested the
performance of genetic algorithms for these parameters
such as population size, the crossover probability (Pc) and
the mutation probability (Pm).

Following experiments shows effect of variation of GA
parameters on its performance.

A. Following table shows the effect of variation of

population size on the performance of genetic
algorithms in permutation flow shop scheduling

Parameter settings are:

CROSSOVER PROBABILITY 0.6

ELITE COUNT 2

NO OF GENERATIONS 100

TIME LIMIT INFINITE

FITNESS LIMIT INFINITE

STALL GENERATION LIMIT INFINITE

STALL TIME LIMIT INFINITE

Results taken are:

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

184

POP_SIZE Make Make Make
 Span Span Span

 Run#1 Run#2 Run#3

50 108 109 107

100 105 107 105

150 104 105 105

200 105 105 105

250 105 104 105

300 104 105 104

Fig 2: Effect of population size on GA Performance

Here, we can observe, for our problem MPTS (in
permutation flow shop scheduling), as the population size
increases, the GA performs better

(i.e. value of make span decreases). So we can say,
increasing the population size enables the genetic algorithm
to search more points and thereby obtain a better result.

B. Following table shows the effect of variation of

crossover rate on the performance of genetic
algorithms in permutation flow shop scheduling.

Parameter settings are:

POPULATION SIZE 100

ELITE COUNT 2

NO OF GENERATIONS 100

TIME LIMIT INFINITE

FITNESS LIMIT INFINITE

STALL GENERATION LIMIT INFINITE

STALL TIME LIMIT INFINITE

Results taken are:

Crossover Make Make
Probability Make Span Span Span

 Run#1 Run#2 Run#3

0.1 105 107 105

0.2 105 105 104

0.3 105 105 105

0.4 105 105 105

0.5 105 105 105

0.6 104 104 105

0.7 105 105 106

0.8 106 107 104

0.9 107 107 106

1 107 107 108

Fig 3: Effect of crossover Probability on GA Performance

The genetic algorithm minimizes the fitness function.
Here, we can observe, for our problem MPTS (in
permutation flow shop scheduling), as the as the crossover
probability increases till 0.6, the GA performs better (i.e.
value of make span decreases), but after crossover
probability 0.6, the performance of GA degrades. So we
can say, for this fitness function, setting Crossover
fraction to 0.6 yields the best result.

C. Following table shows the effect of variation of Elite Count

on the performance of genetic algorithms in permutation
flow shop scheduling.

Parameter settings are:

POPULATION SIZE 100

CROSSOVER PROBABILITY 0.6

NO OF GENERATIONS 100

TIME LIMIT INFINITE

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

185

FITNESS LIMIT INFINITE

STALL GENERATION LIMIT INFINITE

STALL TIME LIMIT INFINITE

Results taken are:

Elite Make Make Make
count Span Span Span

 Run#1 Run#2 Run#3

2 104 104 105

3 107 105 105

4 104 105 105

5 105 108 105

6 105 104 104

7 105 105 106

Fig 4: Effect of elite count on GA Performance
Since the genetic algorithm minimizes the fitness function.
Here, for our problem MPTS (in permutation flow shop
scheduling), as the value of elite count increases, the
performance of GA degrades (i.e. value of make span
increases). So we can say, setting Elite count to a high
value makes the search less effective.

V. CONCLUSION

In this paper, we have implemented a genetic algorithm for
MPTS in permutation flow shop scheduling environment,
where the processing order of the jobs is same on all the
processors. Genetic Algorithms is applied for the solution
of this problem. We evaluate the performance of the GA
(on minimize maximum make span of the processor) with
the variation of its control parameters. Here we have
concluded that:

A. Increasing the population size enables the genetic
algorithm to search more points and thereby obtain a
better result.

B. For a fitness function, a setting for Crossover
probability can yield the best result. The genetic
algorithm minimizes the fitness function.

C. Setting Elite count to a high value causes the fittest
individuals to dominate the population, which makes
the search less effective.

VI. REFERENCES

[1] Zbigniew Michalewicz, “Genetic Algorithms + Data

Structures=Evolution Programs”, Springer-verlag.Practical genetic
algorithms By Randy L. Haupt, S. E. Haupt

[2] MATLAB TUTORIAL by Edward Kamen and Bonnie Heck,
published by Prentice Hall

[3] MATLAB by RUDRA PRATAP, tenth edition, published by Oxford
University Press

[4] Michalewicz, Z. and Attia, N., “Evolutionary Optimization of
 Constrained Problems. In Sebald, A. and Fogel, L. (Eds.), Annual
 Conference on
[5] EvolutionaryProgramming, World Scientific Publishing, 1994

Kamaljit Kaur, Amit Chhabra and Gurvinder Singh., 2010, Modified
Genetic Algorithm for Task Scheduling in Homogeneous Parallel
System Using Heuristics proceeding of International Journal of Soft
Computing Vol. 5, Issue: 2,Page No.: 42-51

[6] Javier Carretero, Fatos XhafaAjith Abraham, “GENETIC

ALGORITHM BASED SCHEDULERS FOR GRID COMPUTING
SYSTEMS” published in International Journal of Innovative,
Computing, Information and Control, Volume 3, Number 6,
December 2007.

[7] Prof. Sanjay R Sutar, Jyoti P. Sawant, Jyoti R. Jadhav , Task

Scheduling For Multiprocessor Systems Using Memetic Algorithms

[8] Sachi Gupta, Gaurav Agarwal, Vikas Kumar, Task Scheduling in

Multiprocessor System Using Genetic Algorithm, 2010 Second
International Conference on Machine Learning and Computing

[9] EL-REWINI, H., ALI, H. H., AND LEWIS, T. G.1995. Task

scheduling in multiprocessor systems. IEEE Computer

[10] ALI, S., SAIT, S. M., AND BENTEN, M. S. T. 1994.GSA:
 Scheduling and allocation using genetic algorithm. In Proceedings of
 the Conference on EURO-DAC

