
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

155

Distributed Computing: An Emerging Paradigm for New

Technologies

Swati Gupta1, Kuntal Saroha2 , Samiksha Mehta3

1Lecturer, RIMT, Chidana
Swati.mangla.555@gmail.com

2Research Scholar, IIIT Gwaliar

sarohakuntal@gmail.com

3Asst. Professor, HIT, Asouda
ersam_mehta@yahoo.co.in

ABSTRACT
Terms such as ‘Distributed Computing’ have gained a lot
of attention, as they are used to describe emerging
paradigms for the management of information and
computing resources. Distributed computing is that type of
computing that uses geographically and administratively
disparate resources. In distributed computing, individual
users can access computers and data transparently, without
having to consider location, operating system, account
administration, and other details. In distributed computing,
the details are abstracted, and the resources are virtualized.
In this paper , we presented this technology , its
characteristics and also its architecture.
Keywords: Distributed computing, grid computing,
distributed architecture, network models

I INTRODUCTION

The word distributed in terms such as
"distributed system", "distributed
programming", and "distributed algorithm"
originally referred to computer networks
where individual computers were physically
distributed within some geographical area.
The terms are nowadays used in a much
wider sense, even referring to autonomous
processes that run on the same physical
computer and interact with each other by
message passing. While there is no single
definition of a distributed system, the
following defining properties are commonly
used: There are several autonomous
computational entities, each of which has its
own local memory.

• The entities communicate with each other by
message passing.

In this paper, the computational entities are
called computers or nodes.

A distributed system may have a common goal,
such as solving a large computational problem.
Alternatively, each computer may have its own
user with individual needs, and the purpose of
the distributed system is to coordinate the use of
shared resources or provide communication
services to the users.

Other typical properties of distributed systems
include the following:

• The system has to tolerate failures in
individual computers.

• The structure of the system (network
topology, network latency, number of
computers) is not known in advance, the
system may consist of different kinds of
computers and network links, and the
system may change during the execution of
a distributed program.

• Each computer has only a limited,
incomplete view of the system. Each
computer may know only one part of the
input

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

156

Distributed computing is a field of computer
science that studies distributed systems. A
distributed system consists of multiple
autonomous computers that communicate
through a computer network. The computers
interact with each other in order to achieve a
common goal. A computer program that runs in
a distributed system is called a distributed
program, and distributed programming is the
process of writing such programs.

Distributed computing also refers to the use of
distributed systems to solve computational
problems. In distributed computing, a problem is
divided into many tasks, each of which is solved
by one or more computers.

Distributed vs Grid Computing

There are actually two similar trends moving in
tandem--distributed computing and grid
computing. Depending on how you look at the
market, the two either overlap, or distributed
computing is a subset of grid computing. Grid
Computing got its name because it strives for an
ideal scenario in which the CPU cycles and
storage of millions of systems across a
worldwide network function as a flexible,
readily accessible pool that could be harnessed
by anyone who needs it, similar to the way
power companies and their users share the
electrical grid.

Sun defines a computational grid as "a hardware
and software infrastructure that provides
dependable, consistent, pervasive, and
inexpensive access to computational
capabilities." Grid computing can encompass
desktop PCs, but more often than not its focus is
on more powerful workstations, servers, and
even mainframes and supercomputers working
on problems involving huge datasets that can run
for days. And grid computing leans more to
dedicated systems, than systems primarily used
for other tasks.

Large-scale distributed computing of the variety
we are covering usually refers to a similar

concept, but is more geared to pooling the
resources of hundreds or thousands of
networked end-user PCs, which individually are
more limited in their memory and processing
power, and whose primary purpose is not
distributed computing, but rather serving their
user. As we mentioned above, there are various
levels and types of distributed computing
architectures, and both Grid and distributed
computing don't have to be implemented on a
massive scale. They can be limited to CPUs
among a group of users, a department, several
departments inside a corporate firewall, or a few
trusted partners across the firewall.

II DISTRIBUTED SYSTEM
ARCHITECTURE

 Distributed systems are built up on top of
existing networking and operating systems
software. A distributed system comprises a
collection of autonomous computers, linked
through a computer network and distribution
middleware. To become autonomous there exist
a clear master/slave association Between two
computers in the network. The middleware
enables computers to coordinate their activities
and to share the resources of the system, so that
users perceive the system as a single, integrated
computing facility.

Thus, middleware is the bridge that connects
distributed applications across dissimilar
physical locations, with dissimilar hardware
platforms, network technologies, operating
systems, and programming languages. The
middleware software is being developed
following agreed standards and protocols. It
provides standard services such as naming,
persistence, concurrency control to ensures that
accurate results for concurrent processes are
produced and obtains the results as fast as
possible, event distribution, authorization to
specify access rights to resources, security etc.
The middleware service extends over multiple
machines. Figure 1 shows a simple architecture
of a distributed system

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

157

Figure 1 : Distributed System

The distributed system can be viewed as
defined by the physical components or as
defined from user or computation point of view.
The first is known as the physical view and the
second as the logical view. Physically a
distributed system consists of a set of nodes
(computers) linked together by a
communication network. The nodes in the
network are loosely coupled and do not share
their memory. The nodes in the system
communicate by passing messages over the
communication network. Communication
protocols are used for sending messages from
one node to another. The logical model is the
view that an application has of the system. It
contains a set of concurrent processes and
communication channels between them. The
core network is treated as fully connected.
Processes communicate by sending messages to
each other. A system is synchronous if during a
proper execution, it all the time performs the
intended operation in a known fixed time,
otherwise it is asynchronous. In synchronous
system the failure can be noticed by a lack of
response from the system. Therefore, timeout
based techniques are used for failure discovery.

A distributed system can be constructed by
means of fully connected networks or partially
connected networks . A fully connected network
(figure 2) is a network in which each of the
nodes is connected to each other. The problem
with such a system is that adding new nodes to
the system results in the increase of number of
nodes connected to the node. Due to this the
number of file descriptors and complexity for

each node to implement the connections are
increased heavily. Thus, the scalability
(capability of a system to continue to function
well when the system is changed in size or
volume) of such systems is limited by each
node’s capacity to open file descriptors and the
ability to handle the new connections. The
communication cost - the message delay of
sending a message from the source to the
destination- is low because a message sent from
one computer to another one only goes through
one link.

Fully connected systems are reliable because
when a few computers or links fail, the rest of
the computers can still communicate with others.
In a partially connected network, direct links
exist between some, but not all, pairs of
computers. A few of the partially connected
network models are star structured networks,
multi-access bus networks; ring structured
networks, and tree-structured networks (figure
2). Some of the traditional distributed systems
such as client/server paradigm use a star as the
network topology. The problem with such a
system is that when the central node fails, the
entire system will be collapsed. In a multi-
access bus network, a set of clients are
connected via a shared communications line,
called a bus. The bus link becomes the
bottleneck and if it fails, all the nodes in the
system cannot connect to each other.

Another disadvantage is that performance
degrades as additional computers are added or
on heavy traffic. In a ring network each node
connects to exactly two other nodes, forming a
single continuous pathway for signals through
each node. As new nodes are added, the
diameter of the system grows as the number of
nodes in the system, resulting in a longer
message transmission delay. A node failure or
cable break might isolate every node attached to
the ring. In a tree-structured network
(hierarchical network), the nodes are connected
as a tree. Each node in the network having a
specific fixed number, of nodes associated to it
at the next lower level in the hierarchy. The
scalability of the tree-structured network is

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

158

better than that of the fully connected network,
since new node can be added as the child node
of the leaf nodes or the interior nodes. On the
other hand, in such systems, only messages
transmitted between a parent node and its child
node go though one link, other messages
transmitted between two nodes have to go
through one or more intermediate nodes.

Fully Connected Network

Tree Structured Network

Ring Structured Network

Multi-access Bus Network

Star Structured Network

Figure 2 : Network Models

III CHARACTERISTICS OF A
DISTRIBUTED SYSTEM

 A distributed system must possess the following
characteristics to deliver utmost performance
for the users :

1. Fault-Tolerant: Distributed systems consist
of a large number of hardware and software
modules that are bound to fail in the long run.
Such component failures can escort to service
unavailability. Hence, the systems should be
able to recover from component failures without
performing erroneous actions. The goal of fault
tolerance is to avoid failures in the system even
in the presence of faults to provide
uninterrupted service. A system is said to be
fault tolerant if it can mask the presence of
faults. The aim of any fault tolerant system is to
increase its reliability or availability. The
reliability of a system is defined as the
probability that the system survives till that
time. A reliable system prevents loss of
information even in the event of component
failures. Availability is the fraction of time for
which a system is available for use. Usually

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

159

fault tolerance is achieved by providing
redundancy.

Redundancy is defined as those parts of the
system that are not needed for its correct
functioning. It is of three types – hardware,
software and time. Hardware redundancy is
achieved by adding extra hardware components
to system which take over the role of failed
components in case some faults occur in them.
Software redundancy includes extra instructions
and code included for managing the extra
hardware components, and using them correctly
for uninterrupted service, in case of some
component failure. In time redundancy the same
instruction is executed many times. This is used
to handle temporary faults in the system .

2. Scalable: A distributed system can operate
correctly even as some aspect of the system is
scaled to a larger size. Scale has three
components: the number of users and other
entities that are part of the system, the distance
between the farthest nodes in the system, and
the number of organizations that exert
administrative control over pieces of the
system. The three elements of scale affect
distributed systems in many ways. Among the
affected components are naming, authentication
for verifying someone’s identity, authorization,
communication, the use of remote resources, and
the mechanisms by which users observe the
system. Three techniques are employed to
manage scale: replication, distribution, and
caching . Replication creates multiple copies of
resources. Its use in naming, authentication,
and file services reduces the load on individual
servers and improves the reliability and
availability of the services as a whole. The two
important issues of replication are the
placement of the replicas and the mechanisms by
which they are kept consistent. The placement
of replicas in a distributed system depends on
the purpose for replicating the resource. If a
service is being replicated to reduce the network
delays when the service is accessed, the replicas
are sprinkled across the system. If the majority
of users are local, and if the service is being
replicated to improve its availability or to

spread the load across multiple servers, then
replicas may be placed near one another. If a
change is made to the object, the change should
be noticeable to everyone in the system. For
example, the system sends the updates to any
replica, and that replica forwards the update to
the others as they become available. If
inconsistent updates are received by different
replicas in different orders, timestamps (the
date/time at which the update was generated) are
used to differentiate the copies.

 Distribution, another mechanism for managing
scale in distributed systems, allows the
information maintained by a distributed service
to be extended across several servers.
Distributing data across multiple servers reduces
the size of the database that must be maintained
by each server, dropping the time needed to
search the database. Distribution also spreads
the load across the servers reducing the number
of requests that are handled by each. If requests
can be distributed to servers in proportion to
their power, the load on servers can be
effectively managed. Network traffic can be
reduced if data are assigned to servers close to
the location from which they are most
frequently used. In tree structured system, if
cached copies are available from subordinate
servers, the upper levels can be avoided.

 Caching is another important technique for
building scalable systems. Caching decreases
the load on servers and the network. Cached data
can be accessed faster than if a new request is
made. The difference between replication and
caching is that cached data is a short-term data.
Instead of propagating updates on cached data,
consistency is maintained by nullifying cached
data when consistency cannot be guaranteed.
Caching is usually performed by the client,
reducing frequent requests to network services.
Caching can also occur on the servers executing
those services. Reading a file from the memory
cached copy on the file server is faster than
reading it from the client's local disk.

3. Predictable Performance: Various
performance metrics such as response time

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

160

(elapsed time between the end of an inquiry or
demand on a computer system and the
beginning of a response), throughput (the rate at
which a network sends or receives data), system
utilization, network capacity etc. are employed
to assess the performance. Predictable
performance is the ability to provide desired
responsiveness in a timely manner.

 4. Openness: The attribute ‘openness’ ensures
that a subsystem is continually open to
interaction with other systems. Web services are
software systems designed to support
interoperable machine-to-machine interaction
over a network. These protocols allow
distributed systems to be extended and scaled.
An open system that scales has benefit over a
completely closed and self-reliant system. A
distributed system independent from
heterogeneity of the underlying environment
such as hardware and software platforms
achieves the property of openness. Therefore,
every service is equally accessible to every
client (local or remote) in the system. The
implementation, installation and debugging of
new services should not be very complex in a
system possessing openness characteristic.

5. Security: Distributed systems should allow
communication between programs/users/
resources on different computers by enforcing
necessary security arrangements. The security
features are mainly intended to provide
confidentiality, integrity and availability.
Confidentiality (privacy) is protection against
disclosure to unauthorised person. Violation of
confidentiality range from the discomforting to
the catastrophic. Integrity provides protection
against alteration and corruption. Availability
keeps the resource accessible. Many incidents
of hacking compromise the integrity of
databases and other resources. "Denial of
service" attacks are attacks against availability.
Other important security concerns are access
control and non repudiation. Maintaining access
control facilitates the users to access only those
resources and services to which they are
entitled. It also ensures that users are not denied
resources that they legitimately can expect to

access. Non repudiation provides protection
against denial by one of the entities involved in
a communication. The security mechanisms put
into practice should guarantee appropriate use
of resources by different users in the system.

6. Transparency: Distributed systems should
be perceived by users and application
developers as a whole rather than as a collection
of cooperating components. The locations of the
computer systems involved in the operations,
concurrent operations, data replication, resource
discovery from multiple sites, failures, system
recovery etc. are hidden from users.
Transparency hides the distributed nature of the
system from its users and shows the user that
the system is appearing and performing as a
normal centralized system. The transparency
can be employed in different ways in a
distributed system (Figure 3) .

Figure 3 : Transparency in Distributed
Systems

Access transparency facilitates the users of a
distributed system to access local and remote
resources using identical operations. (e.g.
navigation in the web).

Location transparency describes names used to
identify network resources (e.g. IP address)
independent of both the user's location and the
resource location. In other words, location
transparency facilitates a user to access
resources from anywhere on the network
without knowing where the resource is located.
A file could be on the user's own PC, or
thousands of miles away on other servers.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

161

Concurrency transparency enables several
processes to operate concurrently using shared
information objects without interference
between them (e.g.: Automatic Teller Machine
network). The users will not notice the existence
of other users in the system (even if they access
the same resources).

Replication transparency enables the system to
make additional copies of files and other
resources for the purpose of performance and/or
reliability, without the users noticing. If a
resource is replicated among several locations, it
should appear to the user as a single resource
(e.g. Mirroring - Mirror sites are usually used to
offer multiple sources of the same information
as a way of providing reliable access to large
downloads).

 Failure transparency enables the applications to
complete their task despite failures occurring in
certain components of the system. For example,
if a server fails, but users are automatically
redirected to another server and the user never
notices the failure, the system is said to show
high failure transparency. Failure transparency
is one of the most difficult types of transparency
to accomplish since it is hard to determine
whether a server has actually failed, or whether
it is simply responding very slowly. Moreover,
it is generally unfeasible to achieve full failure
transparency in a distributed system since
networks are unreliable.

Migration transparency facilitates the resources
to move from one location to another without
having their names changed. (e.g.: Web Pages).
Users should not be aware of whether a
resource or computing entity possesses the
ability to move to a different physical or logical
location.

 Performance transparency ensures the load
variation should not lead to performance
degradation. This could be achieved by
automatic reconfiguration as response to
changes of the load. (e.g.: load distribution)

 Scalability transparency allows the system to
remain efficient even with a significant increase
in the number of users and resources connected
(e.g. World-Wide-Web, distributed database)

IV WORLD WIDE WEB– A MASSIVE
DISTRIBUTED SYSTEM

 The Internet - a massive network of networks,
connects millions of computers together
worldwide, forming a network in which any
computer can communicate with any other
computer provided that they are both connected
to the Internet. The World Wide Web (WWW),
or simply Web, is a way of accessing
information over the medium of the Internet.
WWW consists of billions of web pages, spread
across thousands and thousands of servers all
over the world. It is an information-sharing
model that is built on top of the Internet. The
most well-known example of a distributed
system is the collection of web servers.
Hypertext is a document containing words that
bond to other documents in the Web. These
words are known as links and are selectable by
the user. A single hypertext document can hold
links to many documents.

 The backbone of WWW are its files, called
pages or Web pages, containing information
and links to resources - both text and multimedia
- throughout the Internet. Internet protocols are
sets of rules that allow for inter-machine
communication on the Internet. HTTP
(HyperText Transfer Protocol) transmits
hypertext over networks. This is the protocol of
the Web. Simple Mail Transport Protocol or
SMTP distributes e-mail messages and attached
files to one or more electronic mailboxes. VoIP
(Voice over Internet Protocol) allows delivery
of voice communications over IP networks, for
example, phone calls. A web server accepts
HTTP requests from clients, and serving them
HTTP responses along with optional data
contents such as web pages.

 The operation of the web relies primarily on
hypertext as its means of information retrieval.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

162

Web pages can be created by user activity.
Creating hypertext for the Web is accomplished
by creating documents with a language called
hypertext markup language, or HTML. With
HTML, tags are placed within the text to achieve
document formatting, visual features such as
font size, italics and bold, and the creation of
hypertext links.

Servers implementing the HTTP protocol jointly
provide the distributed database of hypertext
and multimedia documents. The clients access
the web through the browser software installed
on their system. The URL (uniform resource
locator) indicates the internet address of a file
stored on a host computer, or server, connected
to the internet.

URLs are translated into numeric addresses
using the domain name system (DNS). The
DNS is a worldwide system of servers that
stores location pointers to web sites. The
numeric address, called the IP (Internet
Protocol) address, is actually the "real" URL.
Once the translation is made by the DNS, the
browser can contact the web server and ask for
a specific file located on its site. Web browsers
use the URL to retrieve the file from the server.
Then the file is downloaded to the user's
computer, or client, and displayed on the
monitor connected to the machine. Due to this
correlation between clients and servers, the web
is a client-server network. The web is used by
millions of people every day for different
purposes including email, reading news,
downloading music, online shopping or simply
accessing information about anything. In fact,
the web symbolizes a massive distributed
system that materializes as a single resource to
the user accessible at the click of a button. In
order for the web to be accessible to anyone,
some agreed-upon standards must be pursued in
the formation and delivery of its content. An
organization leading the efforts to standardize
the web is the World Wide Web (W3C)
Consortium.

Web Information Retrieval

Web information retrieval is the process of
searching the world’s largest and linked
document collection – the World Wide Web, for
information most relevant to a user’s query. The
various challenges of information retrieval on
the web are:

(i) data is distributed - data spans over
many computers, of a variety of
platforms,

(ii) data is volatile - computers and files are
added and removed frequently and
unpredictably,

(iii) volume of data is very huge - growth
continues exponentially,

(iv) data quality is inconsistent - data may
be false, error-ridden, invalid, outdated,
ambiguous and multiplicity of sources
introduces inconsistency and

(v) heterogeneous data - multiple media
types and media formats and multiple
languages and alphabets. As a result, it
would be physically unfeasible for an
individual to sift through and examine
all these pages to find the required
information. Usually, in order to search
for information on the internet a
software tool called Search Engine is
used. When a user enters a query into a
search engine from their browser
software, their input is processed and
used to search the database for
occurrences of particular keywords. A
variety of search engines such as
Google, Yahoo! Search, are available to
make the web retrieval process very
faster. Two main architectures used for
web searching are centralized and
distributed search.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

163

Figure 4 : Search Engine (Centralized Architecture)

Centralized Architecture: The aim of centralized
approach is to index sizeable portion of Web,
independently of topic and domain. The
centralized architecture based search engine
has main three parts: a crawler, an indexer, and
query handler. The crawler (spider or robot)
retrieves web pages, compress and store into a
page repository. This process is called crawling
(sometimes known as robot spidering, gathering
or harvesting).

Some of the most well known crawlers include
Googlebot (from Google) MSNBot (from
MSN) and Slurp (from Yahoo!). Crawlers are
directed by a crawler control module that gives
the URLs to visit next. The indexer processes
the web pages collected by the crawler and
builds an index, which is the main data structure
used by the search engine and represents the
crawled web pages. The inverted index contains
for each word a sorted list of couples such as
docID and position in the document. The query
engine processes the user queries and returns
matching results using the index. The results are
returned to the user in an order determined by a
ranking algorithm. Each search engine may have
a different ranking algorithm, which parses the
pages in the engine’s database to determine
relevant responses to search queries. Some
search engines keep a local cache copy of many
popular pages indexed in their database, to allow

for faster access and in case the destination
server is temporarily inaccessible.

Figure 5: Search Engine – Distributed
Architecture

Distributed architecture: Searching is a
coordinated effort of many information gatherers
and brokers. Gatherer extracts information
(called summaries) from the documents stored
on one or more web servers. It can handle
documents in many formats: HTML, PDF,
Postscript, etc. Broker obtains summaries from
gatherers, stores them locally, and indexes the
data. It can search the data; fetch data from other
brokers and makes data available for user
queries and to other brokers. The advantages of
distributed architecture are the gatherer running
on a server reduces the external traffic on that
server and evading of gatherer sending
information to multiple brokers reduces work
repetition.

V CONCLUSION

In this chapter an overview of distributed
systems are presented. The architecture, various
characteristics are discussed.further to that world
wide web and web information retrieval is also
discussed in this paper. The future of distributed
computing is still quite uncertain since it is one
of many new types of computing. The
technology has truly shown its worth as a useful
tool for various complex applications.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

164

VI REFERENCES

[1] The Object Management Group. “Common Object
Request Broker: Architecture and Specification.” OMG
Document Number 91.12.1 (1991).

[2] [Parrington, Graham D. “Reliable Distributed Pro-
gramming in C++: The Arjuna Approach.” USENIX 1990
C++ Conference Proceedings (1991).

[3] Black, A., N. Hutchinson, E. Jul, H. Levy, and L.
Carter. “Distribution and Abstract Types in Emerald.”
IEEE Transactions on Software Engineering SE-13, no. 1,
(January 1987).

[4] Dasgupta, P., R. J. Leblanc, and E. Spafford. “The
Clouds Project: Designing and Implementing a Fault
Tolerant Distributed Operating System.” Georgia Insti-tute
of Technology Technical Report GIT-ICS-85/29. (1985).

[5] Microsoft Corporation. Object Linking and Embed-ding
Programmers Reference. version 1. Microsoft Press, 1992.

[6] Linton, Mark. “A Taste of Fresco.” Tutorial given at the
8th Annual X Technical Conference (January 1994).

[7] Jaayeri, M., C. Ghezzi, D. Hoffman, D. Middleton, and
M. Smotherman. “CSP/80: A Language for Com-
municating Sequential Processes.” Proceedings: Dis-
tributed Computing CompCon (Fall 1980).

[8] Cook, Robert. “MOD- A Language for Distributed
Processing.” Proceedings of the 1st International Con-
ference on Distributed Computing Systems (October 1979).

[9] Birrell, A. D. and B. J. Nelson. “Implementing Remote
Procedure Calls.” ACM Transactions on Com-puter
Systems 2 (1978).

[10] Hutchinson, N. C., L. L. Peterson, M. B. Abott, and S.
O’Malley. “RPC in the x-Kernel: Evaluating New Design
Techniques.” Proceedings of the Twelfth Symposium on
Operating Systems Principles 23, no. 5 (1989).

[11] Zahn, L., T. Dineen, P. Leach, E. Martin, N. Mish-kin,
J. Pato, and G. Wyant. Network Computing Archi-tecture.
Prentice Hall, 1990.

