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ABSTRACT 

The continuous hardware and software development, 
jointly with the world economical interaction phenomenon 
has contributed to the competitiveness increase between 
producing and delivering companies of software product 
and services. Cost prediction is the process of estimating 
the effort required to develop a software system. Cost 
prediction is an important part of software development. In 
recent years, software has become the most expensive 
component of computer system. The bulk of the cost of 
software development is due to the human effort and most 
cost estimation methods focus on this aspect and give 
estimate in terms of person –months. In this paper, we will 
discuss how we can predict the cost using Neural Network 
learning techniques. 
Keywords: Algorithmic models, Cost Prediction, SLOC. 

I.  INTRODUCTION  

Cost prediction is the process of estimating the effort 
required to develop a software system. Accurate cost 
prediction is important because: 

� It can help to classify and prioritize 
development projects with respect to an 
overall business plan. 

� It can be used to determine what resources 
to commit to the project and how well these 
resources will be used. 

� It can be used to assess the impact of 
changes and support re-planning. 

� Projects can be easier to manage and control 
when resources are better matched to real 
needs. 

� Customers expect actual development costs 
to be in line with estimated costs. 

 
 Software cost prediction involves determination of 
effort, time and cost. Effort is measured in person- 
 

months of the programmers, analysts etc.. This effort 
estimate can be converted into cost by calculating an 
average salary per unit time of the staff involved, and 
then multiplying this by the estimated effort required. 
Accurate estimation of software development effort 
has major implications for the management of 
software development. If management’s estimate is 
too low, then the software development team will be 
under considerable pressure to finish the product 
quickly, and hence the resulting software may not be 
fully functional or tested. Thus, the product may 
contain residual errors that need to be corrected 
during a later part of the software life cycle, in which 
the cost of corrective maintenance is greater. On the 
other hand, if a manager’s estimate is too high, then 
too many resources will be committed to the project. 
Furthermore, if the company is engaged in contract 
software development, then too high an estimate may 
fail to secure a contract.  

 Algorithmic models  

Algorithmic models (AM) “calibrate” prespecified 
formulas for estimating development effort from 
historical data. Inputs to these models may include 
the experience of the development team, the required 
reliability of the software, the programming language 
in which the software is to be written, and an estimate 
of the final number of delivered source lines of code 
(SLOC). Basically algorithmic model is formula 
based model which takes historical cost information 
and which is based on the size of the software.  
Algorithmic model includes two most popular 
models used as follows: 
 

a) COCOMO Model 
b) Putnam’s Model and SLIM 
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II. LITERATURE  

2.1 Neural Network Learning Technique 

Learning is a ability that is very similar to adaptation. 
Learning through adaptation to the external 
environment conditions, results in behavioral 
alterations and performance improvement of the 
learning system.  
According to Britannica Dictionary learning refers to 
“the modification of behavior following upon and 
induced by interaction with the environment and as a 
result of experiences leading to the establishment of 
new pattern of response to external stimuli”.  
In the case of ANNs the meaning of learning can be 
given as “a process by which the free parameters of a 
neural network are adapted through a process of 
stimulation by the environment in which the network 
is embedded. The type of learning is determined by 
the manner in which the parameter changes take 
place”. 
Learning is the process by which a neural network 
modifies its internal structure in response to external 
stimuli. According to this definition learning 
procedure of a neural network can be described by 
the three events: the stimulation of the networks by 
some environmental input, the adjustment of 
network’s free parameters as a result of this 
stimulation (adaptation to the external stimuli), and 
finally exhibition of an altered response to the 
environment due to the changes that occurred in its 
internal structure and function. 
The prescribed set of well-defined rules that specifies 
these structural modifications in the network for the 
solution of a learning problem is called a learning 
algorithm, learning law, or learning rule. Due to wide 
variation in nature and requirements of specific 
applications in biological systems there is a 
requirement of learning process to solve each type of 
problem. So there is diverse variety of learning 
algorithms for the design of neural networks.  

Learning methods can be broadly classified 
into two basic types: 

2.1.1 Supervised Learning Method 

In the supervised learning a teacher is required to 
grades the performance of the neural network during 
learning. In this learning method a teacher may be a 
set of data, a part of them to play the role of the 
external inputs (stimuli) to the networks, and the rest 
to correspond to the desired outputs for that inputs. 
By giving the number of layers, the number of 
neurons per layer of the network and the type of 
activation function used, the synaptic weights, which 

were set in the starting, are then adjusted so that at 
the next iteration the output produced by the network 
be closer to the desired output. The goal of the 
learning process is to minimize the error between the 
desired output and the actual output produced by the 
network. At the termination of the learning process, 
the neural network has learned to produce an output 
that closely matches to the desired output. Then the 
network’s structure is fixed and becomes operational, 
ready to fulfill its objective. Supervised learning 
method has following learning algorithms: 

Gradient Descent Learning 

This algorithm tries to minimize the error E between 
actual and desired output by adjusting the synaptic 
weights by an amount proportional to the first 
derivative of the mean squared error with respect to 
the synaptic weight. 
Thus if ∆Wij  is the weight update of the link 
connecting the ith and jth neuron of the two 
neighboring layers, then ∆Wij is defined as  
 

∆W ij    = η ∂E/∂W ij 

 

Where, η is the learning rate parameter and ∂E/∂Wij is 
the error gradient with reference to the weight Wij. 
 
Delta Rule 
Delta rule is the special case of Gradient Descent 
Learning. Delta rule is also referred as the Widrow-
Hoff Learning Rule. According to this learning rule 
the mechanism for synaptic modification during the 
training process acts in an appropriate way in order to 
reduce or minimize the difference between the 
desired output and the actual output produced by the 
processing elements. It is also called the Least Mean 
Square Learning Rule, because it tries to minimize 
the mean squared error of that difference. 
 
Back-propagation Learning rule 
Back-propagation learning (BPL) algorithm was 
invented in 1969 for learning in multilayer network. 
The back-propagation algorithm trains a given feed-
forward multilayer neural network for a given set of 
input patterns with known classifications. When each 
entry of the sample set is presented to the network, 
the network examines its output response to the 
sample input pattern. The output response is then 
compared to the known and desired output and the 
error value is calculated. Based on the error, the 
connection weights are adjusted. The back-
propagation algorithm is based on Widrow-Hoff delta 
learning rule in which the weight adjustment is done 
through mean square error of the output response to 
the sample input .The set of these sample patterns are 
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repeatedly presented to the network until the error 
value is minimized. The back-propagation neural 
network is shown in figure 1 As shown in figure it 
has one input layer, one hidden layer and one output 
layer. Input signals transmitted from input to hidden 
and hidden to output layer and error signal from 
output to hidden and hidden to input. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1 Three layer back-propagation neural 
network  
 
Back-propagation learning algorithm uses training 
data to adjust the weights and threshold of neurons so 
as to minimize the error. It is based on the differences 
between the actual and the desired output. It works 
by applying the gradient descent rule to feed-forward 
network. The algorithm involves two phases, the 
forward phase that occurs when the inputs (external 
stimuli) are presented to the neurons of the input 
layer and are propagated forward to compute the 
output and the backward phase, when the algorithm 
performs modifications in the backward direction. 
 
 Steps of the algorithms are the following: 
 
Step 1:   Initialize weights with small, random values 

 
Step 2:   While stopping condition is not true 
 
          For each training pair (input/output): 

1. each input unit broadcasts its value to all 
hidden units 

2. each hidden unit sums its input signals & 
applies activation function to compute its 
output signal 

3. each hidden unit sends its signal to the 
output units 

4. each output unit sums its input signals & 
applies its activation function to compute its 
output signal 

 
Step 3: Each output computes its error term, its own 
weight correction term and it bias               
(Threshold) correction term & sends it to layer below 
Step 4: Each hidden unit sums its delta inputs from 
above & multiplies by the derivative of its activation 
function; it also computes its own weight correction 
term and its bias correction term 

 
Step 5:  Each output unit updates its weights and bias 
 
Step 6:  Each hidden unit updates its weights and 
bias:  
a. Each training cycle is called an epoch.  The 

weights are updated in each cycle. 
b. It is not analytically possible to determine where 

the global minimum is.  Eventually the algorithm 
stops in a low point, which may just be a local 
minimum. 

 
Cascade Correlation Learning 
Cascade-correlation (CC) is an architecture and 
generative, feed-forward, supervised learning 
algorithm for artificial neural networks. Cascade-
Correlation begins with a minimal network, then 
automatically trains and adds new hidden units one 
by one creating a multi-layer structure. 
Cascade-Correlation (CC) combines two ideas: 
 

� The first is the cascade architecture, in 
which hidden units are fixed which do not 
change once added.  

� The second is the learning algorithm, which 
creates and installs the new hidden units. To 
install new hidden unit, the algorithm 
maximize the magnitude of the correlation 
between the new unit's output and the 
residual error signal of the network. 

 
Steps of the algorithms are following: 
 
Step 1: CC starts with a minimal network consisting 
only of an input and an output layer.  Both layers are 
fully connected. 

 
Step 2: Train all the connections ending at an output 
unit with a usual learning algorithm until the error of 
the net no longer decreases. 
 
Step 3:  Generate the so-called candidate units. Every 
candidate unit is connected with all   input units and 
with all existing hidden units. Between the pool of 
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candidate units and the output units there are no 
weights. 
 
Step 4: Try to maximize the correlation between the 
activation of the candidate units and the residual error 
of the net by training all the links leading to a 
candidate unit. Learning takes place with an ordinary 
learning algorithm. The training is stopped             
when the correlation scores no longer improves. 
 
Step 5: Choose the candidate unit with the maximum 
correlation, freeze its incoming   weights and add it to 
the net. To change the candidate unit into a hidden 
unit,   generate links between the selected unit and all 
the output units. Since the weights leading to the new 
hidden unit are frozen, a new permanent feature             
detector is obtained. Loop back to step 2. 

 
Step 6: This algorithm is repeated until the overall 
error of the net falls below a given value. 
 

 
 
Figure 2 A neural networks trained with Cascade-
correlation learning algorithm  

2.1.2 Unsupervised Learning Method 

In the unsupervised learning method, the target 
output is not presented to the network.. So the 
network follows a self-supervised method and makes 
no use of external influences for synaptic weight 
modification. Instead of an external teacher, there is 
an internal monitoring of the network’s performance 
that makes adaptations in the input signals according 
to the function of the network. Unsupervised learning 
method has following algorithms: 
 
Hebbian Learning 
This algorithm was proposed by Hebb in 1949 and is 
based on correlation weight adjustment. This is the 
mechanism inspired by biology. 

According to Hebb “when an axon of cell A is near 
enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth 
process or metabolic changes take place in one or 
both cells such that A’s efficiency as one of the cells 
firing B, is increased”. This basic rule simple states 
that if a processing element receives an input from 
another processing element, a local and strongly 
interactive mechanism modifies the synaptic 
efficiency according to the correlation of the 
presynaptic and postsynaptic activities. This type of 
synapse is referred as Hebbian synapse. 
 
Competitive Learning 
Competitive learning law, is inspired by learning in 
biological systems According to this algorithm the 
processing elements compete for the opportunity of 
learning. The processing element with the largest 
output has the capability of inhibiting its competitors 
as well as exciting its neighbors. Only the winner is 
permitted an output and only the winner plus its 
neighbors are permitted to adjust their weights 
(winner-takes-all). 
 
Reinforced Learning Method 
In reinforced learning method, a teacher though 
available but does not present the expected output but 
only indicates if the computed output is correct or 
not. The information provided helps the network in 
its learning process. A reward is given for a correct 
answer computed and a penalty for a wring answer. 

III RESULTS AND ANALYSIS 

The results for cost prediction using neural network 
learning techniques is presented and discussed. For 
this purpose neural network tool of MATLAB is 
used. Values using COCOMO Model is also 
predicted using Basic COCOMO Model.  
 
 
3.1 Experimental Setup 
 
 
 Data 
Results in neural networks will be calculated by 
taking historical data  of 50 projects which is divided 
into three parts: 20 projects data for training the 
network, 10 projects for validating the network and 
10 projects for testing the network.  
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Table 3.1 Data used for training the Neural Network 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 3.2 Data used for validating the Neural 
Network 
 
 
Project no. Size Effort 

41 10.50 10.30 

42 42 78.9 

43 44 23.2 

44 48 84.9 

45 50 84.0 

46 78.60 98.70 

47 130 673.7 

48 165 246.9 

49 200 130.3 

50 214 86.9 

 
Table 3.3 Data used for testing the Neural Network 
 
 
 Experimental Parameters 
Parameters used for performing the operation in 
neural networks are as follows: 
 
Parameters Back-

propagation 
Learning 
Algorithms 

Cascade 
Correlation 
Learning 
Algorithms 
 

Network Type Feed-forward 
backprop 

Cascade-
forward 
backprop 

Training 
function 

TRAINLM TRAINLM 

Performance 
function 

MSE MSE 

Number of 
neurons 

20 20 

Transfer 
function 

LOGSIG LOGSIG 

No. of epochs 46 46 

Table 3.4 Parameters for Neural Networks learning 
algorithms in Neural Network Tool of MATLAB 
 
3.2 Evaluations of Results 
 
In this section we will analyze the results of neural 
network learning algorithms i.e. Back-propagation 
learning algorithms, Cascade Correlation learning 
algorithms and COCOMO Model of software 
engineering. Comparison of these cost prediction 
techniques will be done on the basis of results 
evaluated and then values of RMSE and MMRE will 
be calculated and compared. 
 
3.2.1 Performance of Effort between COCOMO 
Model and Back-propagation Learning Algorithms.   
 
In this section effort using COCOMO Model and 
Back-propagation learning algorithms will be 
compared. Values are given in the following table. 

Project 
no. 

Size Effort 

1 4.20 9.00 
2 5.00 8.40 
3 7.80 7.30 
4 9.700 15.60 
5 12.50 23.90 
6 12.80 18.90 
7 20 73.0 
8 24 49.3 
9 28 65.8 
10 29 40.1 
11 30 32.2 
12 31.10 39.60 
13 35 52.6 
14 39 72.0 
15 40 27.0 
16 41 95.5 
17 46.60 96.00 
18 46.50 79.00 
19 52 58.6 
20 57 71.1 

Project no. Size Effort 
31 2.10 5.00 
32 3.10 7.00 
33 21.50 28.50 
34 22 19.1 
35 54 138.8 
36 54.50 90.80 
37 62 189.5 
38 67.50 98.40 
39 318 692.1 
40 450 1107.3 
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Table 3.5 Comparison between COCOMO Model 
and Back-propagation learning algorithms 

 
 
 
Figure 3.1 Comparison of COCOMO Model and 
Back-propagation learning algorithms 
 
Above shown graph indicates that the effort 
calculated using Back-propagation is nearest to the 
actual effort as compared to the COCOMO Model. 
 
3.2.2 Performance of Effort between COCOMO 
Model and Cascade Correlation learning 
Algorithm.   
 
In this section effort using COCOMO Model and 
Cascade Correlation learning algorithm will be 
compared. Values are given in the following table.  
 
 
Projec
t No. 

Size 
(KLOC) 

Actual 
effort 

COCOMO 
Model 

Cascade 
Correlatio
n 

41 10.5 10.3 28.3 16.6 

42 42 78.9 121.5 79.13 

43 44 23.2 127.6 83.45 

44 48 84.9 139.8 81.84 

45 50 84 145.9 80.59 

46 78.6 98.7 234.6 84.26 

47 130 673.7 398 267.9 

48 165 246.9 511.2 245.96 

49 200 130.3 625.6 223.66 

50 214 86.9 671.6 214.73 

 

Table 3.6 Comparison between COCOMO Model 
and Cascade Correlation learning Algorithm 
 
 
 

 
 
 
Figure 3.2 Comparison of COCOMO Model and 
Cascade Correlation learning algorithm Above shown 
graph indicates that effort calculated using Cascade 
Correlation learning algorithm is nearest to the actual 
effort as compared to the COCOMO Model. 
 
 
3.2.3 Performance of Effort between Back-
propagation and Cascade Correlation learning 
algorithms 
 
In this section effort using COCOMO Model and 
Cascade Correlation learning algorithms will be 
compared. Values are given in the following table. 
 

Project 
No. 

Size 
(KLO
C) 

Actual 
effort 

Back-
propagat
ion 

Cascade 
Correlatio
n 

41 10.5 10.3 18.5 16.6 

Pr
oje
ct 
No. 

Size 
(KL
OC) 

Actual 
effort 

COCOM
O Model 

Back-
propagati
onLearnin
g 
Algorithm
s 

41 10.5 10.3 28.3 18.5 
42 42 78.9 121.5 67.83 
43 44 23.2 127.6 70.89 
44 48 84.9 139.8 74.95 
45 50 84 145.9 76.01 
46 78.6 98.7 234.6 72.301 
47 130 673.7 398 170.72 
48 165 246.9 511.2 317.97 
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42 42 78.9 67.83 79.13 

43 44 23.2 70.89 83.45 

44 48 84.9 74.95 81.84 

45 50 84 76.01 80.59 

46 78.6 98.7 72.301 84.26 

47 130 673.7 170.72 267.9 

48 165 246.9 317.97 245.96 

49 200 130.3 410.79 223.66 

50 214 86.9 396 214.73 

     
 
Table 3.7 Comparison between Back-propagation 
learning algorithm and Cascade Correlation learning 
algorithm 
 

 
 
Figure 3.3 Comparison of Back-propagation and 
Cascade Correlation learning algorithms 
 
Above shown graph indicates that effort calculated 
using Cascade Correlation learning algorithm is more 
nearest to the actual effort. 
 
 
3.2.4 Comparison of Different Cost Prediction 
Techniques 
 
In this section effort using COCOMO Model and 
Neural Network learning algorithms will be 
compared. Values are given in the following table. 
 

Proje
ct No. 

Size 
(KL
OC) 

Actual 
Effort 

COCO
MO 
Model 

Back- 
Propagat
ion 

Cascad
e 
Correla
tion 

41 10.5 10.3 28.3 18.5 16.6 

42 42 78.9 121.5 67.83 79.13 

43 44 23.2 127.6 70.89 83.45 

44 48 84.9 139.8 74.95 81.84 

45 50 84 145.9 76.01 80.59 

46 78.6 98.7 234.6 72.301 84.26 

47 130 673.7 398 170.72 267.9 

48 165 246.9 511.2 317.97 245.96 

49 200 130.3 625.6 410.79 223.66 

50 214 86.9 671.6 396 214.73 

 
 
Table 3.8 Comparison between COCOMO Model, 
Back-propagation learning algorithm and Cascade 
Correlation learning algorithm 
 

 
 
Figure 3.4 Comparison of COCOMO Model, Back-
propagtion and Cascade Correlation learning 
algorithms 
 
Above graph shows that effort calculated using 
Cascade Correlation learning algorithm is nearest to 
the actual effort as compared to other cost prediction 
techniques. 
 
3.2.5 Error Prediction of Different Cost Prediction 
Techniques   
 
In this section error will be calculated of different 
Cost Prediction Techniques. 
 
To calculate the error following formule will be used: 
 

Error  =  | E – E’
 | 

 
Where 
 
Error is the output error, 
E is the actual effort, 
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E’ is the estimated effort    
In this section 
E1 = | E - E’

coc | 
E2 = | E - E’back | 
E3 = | E - E’casc |  
 
Where  
E is the actual effort, 
E1 error of COCOMO Model  
E’coc is the estimated effort using COCOMO Model 
E2 error of Back-propagation learning algorithm 
E’back is the estimated effort using Back-propagation 
learning 
E3 error of Cascade Correlation learning algorithm   
E’casc is the estimated effort using Cascade 
Correlation learning 

Pr
oj
ec
t 
N
o. 

Size(KL
OC) 

Actual 
Effort 

COCO
MO 
Model 
(E1) 

Back-
propagation(
E2) 

Cascade 
Correlation(
E3) 

41 10.5 10.3 18 8.20 6.2923 

42 42 78.9 42.6 11.07 0.22766 

43 44 23.2 104.4 47.70 60.2523 

44 48 84.9 54.9 9.95 3.0598 

45 50 84 61.9 7.99 3.4101 

46 78.6 98.7 135.9 26.40 14.14 

47 130 673.7 275.7 502.98 405.8181 

48 165 246.9 264.3 71.07 0.94078 

49 200 130.3 495.3 280.49 93.3566 

50 214 86.9 584.7 309.10 127.8354 

Mean 203.8 127.5 71.5 

 
Table 3.9 Output error of different cost prediction 
techniques 
 
These error values will be used to calculate the 
RMSE and MMRE as follows: 

                                

RMSE = (√((1/N) (∑((Error)i)
2)) ) 

                                
                         

                               
MMRE = ((1/N) (∑ |(Error )i| / Ei)) 

                               
Where N is total number of projects 
 
 
 
Table 3.10  Perforamnce Evaluation of COCOMO 
Model, Back-propagation and Cascade Correlation 
learning algorithms 
 
 
Following graphs shows the comparison using 
RMSE(Root Mean Square Error) of different cost 
prediction techniques. 
 

 
 
Figure 3.5 Comparison using RMSE 
Following graphs shows the comparison using 
MMRE(Mean Magnitude Relative Error) of different 
cost prediction techniques. 
 
 

Performance 
Criteria 

COCOMO 
Model 

Back- 
propagation 

Cascade 
Correlation 

RMSE 277.74 208.71 139.15 

MMRE 2.1557 1.1072 0.6228 
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Figure 3.6 Comparison using MMRE 
 
Comparison using RMSE and MMRE shows that 
Cascade Correlation is better than Back-propagtion 
and COCOMO Model. Accuracy is high in the 
Cascade  Correlation. 
 

 
 
 

IV. CONCLUSION 
 

Today, almost no model can estimate the cost of 
software with a high degree of accuracy. This state of 
the practice is created because: 
 

� There are a large number of interrelated 
factors that influence the software 
development process of a given 
development team and a large number of 
project attributes, such as number of user 
screens, volatility of system requirements 
and the use of reusable software 
components. 

� The development environment is evolving 
continuously. 

� The lack of measurement that truly reflects 
the complexity of a software system. 
 

To produce a better estimate, we must improve our 
understanding of these project attributes and their 
causal relationships, model the impact of evolving 
environment, and develop effective ways of 
measuring software complexity. 
We require estimating the cost at the initial stage of a 
project, but there is high uncertainty about these 
project attributes at initial stage. That’s why the 
estimate produced at this stage is inevitably 

inaccurate, as the accuracy depends highly on the 
amount of reliable information available to the 
estimator. 
 Here three most popular approaches were suggested 
to predict the software cost estimation. In one hand 
COCOMO which has been already proven and 
successfully applied in the software cost estimation 
field and in other hand the Back-propagation learning 
algorithm and cascade-correlation learning algorithm 
in Neural Network that has been extensively used in 
lieu of COCOMO estimation and have demonstrated 
their strength in predicting problem. To get accurate 
results the neural network depends only on 
adjustments of weights from hidden layer of network 
to output layer of neural network. We have used the 
50 projects data set to validate, train and test the 
network. After testing the network it is concluded 
that learning algorithms of neural network perform 
better then the COCOMO model and from learning 
algorithms Cascade correlation performs better then 
the Back-propagation learning algorithm. It has less 
error values, so accuracy is high in Cascade 
Correlation 

 
V.  FUTURE WORK 
 
Future work on these topics should include using a 
cost estimation data set for which the amount of data 
available is not a constraint. A neural network trained 
on this data set would provide a more reliable 
estimate of a neural network’s ability to produce a 
quality cost estimate. 
In order to gain further insight to the black box nature 
of the neural network cost estimate, decision trees 
could be examined. The decision trees could show 
the point at which an attribute’s value changes the 
software’s cost, and what attributes have the largest 
impact on the software’s cost. 
The data creation method could also be examined in 
order to improve its usefulness. The method as 
currently constituted provides more noise in the 
created data than is desired. By introducing more 
constraints and precedent relationships in the data 
creation process, the amount of noise present would 
be reduced. This would allow the data creation 
process to be used on networks that achieved a good 
result value when using their base data set 
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