
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

119

Cost prediction using Neural Network Learning

Techniques

Jitendra1, Vikas2, Kuldeep3, Samiksha4

1 Asst. Professor, RIMT, Chidana

jitendrakumar.03@gmail.com

2Asst. Professor, NCCE, Israna

beniwal_vikas23@rediffmail.com

3Asst. Professor, RIMT, Chidana
malik.4084@gmail.com

4Asst. Professor, HIT, Asodha
ersam_mehta@yahoo.co.in

ABSTRACT

The continuous hardware and software development,
jointly with the world economical interaction phenomenon
has contributed to the competitiveness increase between
producing and delivering companies of software product
and services. Cost prediction is the process of estimating
the effort required to develop a software system. Cost
prediction is an important part of software development. In
recent years, software has become the most expensive
component of computer system. The bulk of the cost of
software development is due to the human effort and most
cost estimation methods focus on this aspect and give
estimate in terms of person –months. In this paper, we will
discuss how we can predict the cost using Neural Network
learning techniques.
Keywords: Algorithmic models, Cost Prediction, SLOC.

I. INTRODUCTION

Cost prediction is the process of estimating the effort
required to develop a software system. Accurate cost
prediction is important because:

� It can help to classify and prioritize
development projects with respect to an
overall business plan.

� It can be used to determine what resources
to commit to the project and how well these
resources will be used.

� It can be used to assess the impact of
changes and support re-planning.

� Projects can be easier to manage and control
when resources are better matched to real
needs.

� Customers expect actual development costs
to be in line with estimated costs.

 Software cost prediction involves determination of
effort, time and cost. Effort is measured in person-

months of the programmers, analysts etc.. This effort
estimate can be converted into cost by calculating an
average salary per unit time of the staff involved, and
then multiplying this by the estimated effort required.
Accurate estimation of software development effort
has major implications for the management of
software development. If management’s estimate is
too low, then the software development team will be
under considerable pressure to finish the product
quickly, and hence the resulting software may not be
fully functional or tested. Thus, the product may
contain residual errors that need to be corrected
during a later part of the software life cycle, in which
the cost of corrective maintenance is greater. On the
other hand, if a manager’s estimate is too high, then
too many resources will be committed to the project.
Furthermore, if the company is engaged in contract
software development, then too high an estimate may
fail to secure a contract.

 Algorithmic models

Algorithmic models (AM) “calibrate” prespecified
formulas for estimating development effort from
historical data. Inputs to these models may include
the experience of the development team, the required
reliability of the software, the programming language
in which the software is to be written, and an estimate
of the final number of delivered source lines of code
(SLOC). Basically algorithmic model is formula
based model which takes historical cost information
and which is based on the size of the software.
Algorithmic model includes two most popular
models used as follows:

a) COCOMO Model
b) Putnam’s Model and SLIM

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

120

II. LITERATURE

2.1 Neural Network Learning Technique

Learning is a ability that is very similar to adaptation.
Learning through adaptation to the external
environment conditions, results in behavioral
alterations and performance improvement of the
learning system.
According to Britannica Dictionary learning refers to
“the modification of behavior following upon and
induced by interaction with the environment and as a
result of experiences leading to the establishment of
new pattern of response to external stimuli”.
In the case of ANNs the meaning of learning can be
given as “a process by which the free parameters of a
neural network are adapted through a process of
stimulation by the environment in which the network
is embedded. The type of learning is determined by
the manner in which the parameter changes take
place”.
Learning is the process by which a neural network
modifies its internal structure in response to external
stimuli. According to this definition learning
procedure of a neural network can be described by
the three events: the stimulation of the networks by
some environmental input, the adjustment of
network’s free parameters as a result of this
stimulation (adaptation to the external stimuli), and
finally exhibition of an altered response to the
environment due to the changes that occurred in its
internal structure and function.
The prescribed set of well-defined rules that specifies
these structural modifications in the network for the
solution of a learning problem is called a learning
algorithm, learning law, or learning rule. Due to wide
variation in nature and requirements of specific
applications in biological systems there is a
requirement of learning process to solve each type of
problem. So there is diverse variety of learning
algorithms for the design of neural networks.

Learning methods can be broadly classified
into two basic types:

2.1.1 Supervised Learning Method

In the supervised learning a teacher is required to
grades the performance of the neural network during
learning. In this learning method a teacher may be a
set of data, a part of them to play the role of the
external inputs (stimuli) to the networks, and the rest
to correspond to the desired outputs for that inputs.
By giving the number of layers, the number of
neurons per layer of the network and the type of
activation function used, the synaptic weights, which

were set in the starting, are then adjusted so that at
the next iteration the output produced by the network
be closer to the desired output. The goal of the
learning process is to minimize the error between the
desired output and the actual output produced by the
network. At the termination of the learning process,
the neural network has learned to produce an output
that closely matches to the desired output. Then the
network’s structure is fixed and becomes operational,
ready to fulfill its objective. Supervised learning
method has following learning algorithms:

Gradient Descent Learning

This algorithm tries to minimize the error E between
actual and desired output by adjusting the synaptic
weights by an amount proportional to the first
derivative of the mean squared error with respect to
the synaptic weight.
Thus if ∆Wij is the weight update of the link
connecting the ith and jth neuron of the two
neighboring layers, then ∆Wij is defined as

∆W ij = η ∂E/∂W ij

Where, η is the learning rate parameter and ∂E/∂Wij is
the error gradient with reference to the weight Wij.

Delta Rule
Delta rule is the special case of Gradient Descent
Learning. Delta rule is also referred as the Widrow-
Hoff Learning Rule. According to this learning rule
the mechanism for synaptic modification during the
training process acts in an appropriate way in order to
reduce or minimize the difference between the
desired output and the actual output produced by the
processing elements. It is also called the Least Mean
Square Learning Rule, because it tries to minimize
the mean squared error of that difference.

Back-propagation Learning rule
Back-propagation learning (BPL) algorithm was
invented in 1969 for learning in multilayer network.
The back-propagation algorithm trains a given feed-
forward multilayer neural network for a given set of
input patterns with known classifications. When each
entry of the sample set is presented to the network,
the network examines its output response to the
sample input pattern. The output response is then
compared to the known and desired output and the
error value is calculated. Based on the error, the
connection weights are adjusted. The back-
propagation algorithm is based on Widrow-Hoff delta
learning rule in which the weight adjustment is done
through mean square error of the output response to
the sample input .The set of these sample patterns are

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

121

repeatedly presented to the network until the error
value is minimized. The back-propagation neural
network is shown in figure 1 As shown in figure it
has one input layer, one hidden layer and one output
layer. Input signals transmitted from input to hidden
and hidden to output layer and error signal from
output to hidden and hidden to input.

Figure 1 Three layer back-propagation neural
network

Back-propagation learning algorithm uses training
data to adjust the weights and threshold of neurons so
as to minimize the error. It is based on the differences
between the actual and the desired output. It works
by applying the gradient descent rule to feed-forward
network. The algorithm involves two phases, the
forward phase that occurs when the inputs (external
stimuli) are presented to the neurons of the input
layer and are propagated forward to compute the
output and the backward phase, when the algorithm
performs modifications in the backward direction.

 Steps of the algorithms are the following:

Step 1: Initialize weights with small, random values

Step 2: While stopping condition is not true

 For each training pair (input/output):

1. each input unit broadcasts its value to all
hidden units

2. each hidden unit sums its input signals &
applies activation function to compute its
output signal

3. each hidden unit sends its signal to the
output units

4. each output unit sums its input signals &
applies its activation function to compute its
output signal

Step 3: Each output computes its error term, its own
weight correction term and it bias
(Threshold) correction term & sends it to layer below
Step 4: Each hidden unit sums its delta inputs from
above & multiplies by the derivative of its activation
function; it also computes its own weight correction
term and its bias correction term

Step 5: Each output unit updates its weights and bias

Step 6: Each hidden unit updates its weights and
bias:
a. Each training cycle is called an epoch. The

weights are updated in each cycle.
b. It is not analytically possible to determine where

the global minimum is. Eventually the algorithm
stops in a low point, which may just be a local
minimum.

Cascade Correlation Learning
Cascade-correlation (CC) is an architecture and
generative, feed-forward, supervised learning
algorithm for artificial neural networks. Cascade-
Correlation begins with a minimal network, then
automatically trains and adds new hidden units one
by one creating a multi-layer structure.
Cascade-Correlation (CC) combines two ideas:

� The first is the cascade architecture, in
which hidden units are fixed which do not
change once added.

� The second is the learning algorithm, which
creates and installs the new hidden units. To
install new hidden unit, the algorithm
maximize the magnitude of the correlation
between the new unit's output and the
residual error signal of the network.

Steps of the algorithms are following:

Step 1: CC starts with a minimal network consisting
only of an input and an output layer. Both layers are
fully connected.

Step 2: Train all the connections ending at an output
unit with a usual learning algorithm until the error of
the net no longer decreases.

Step 3: Generate the so-called candidate units. Every
candidate unit is connected with all input units and
with all existing hidden units. Between the pool of

Input
layer

xi

x1

x2

xn

1

2

i

n

Output
layer

1

2

k

l

yk

y1

y2

yl

Input signals

Error signals

wjk

Hidden
layer

wij

1

2

j

m

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

122

candidate units and the output units there are no
weights.

Step 4: Try to maximize the correlation between the
activation of the candidate units and the residual error
of the net by training all the links leading to a
candidate unit. Learning takes place with an ordinary
learning algorithm. The training is stopped
when the correlation scores no longer improves.

Step 5: Choose the candidate unit with the maximum
correlation, freeze its incoming weights and add it to
the net. To change the candidate unit into a hidden
unit, generate links between the selected unit and all
the output units. Since the weights leading to the new
hidden unit are frozen, a new permanent feature
detector is obtained. Loop back to step 2.

Step 6: This algorithm is repeated until the overall
error of the net falls below a given value.

Figure 2 A neural networks trained with Cascade-
correlation learning algorithm

2.1.2 Unsupervised Learning Method

In the unsupervised learning method, the target
output is not presented to the network.. So the
network follows a self-supervised method and makes
no use of external influences for synaptic weight
modification. Instead of an external teacher, there is
an internal monitoring of the network’s performance
that makes adaptations in the input signals according
to the function of the network. Unsupervised learning
method has following algorithms:

Hebbian Learning
This algorithm was proposed by Hebb in 1949 and is
based on correlation weight adjustment. This is the
mechanism inspired by biology.

According to Hebb “when an axon of cell A is near
enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth
process or metabolic changes take place in one or
both cells such that A’s efficiency as one of the cells
firing B, is increased”. This basic rule simple states
that if a processing element receives an input from
another processing element, a local and strongly
interactive mechanism modifies the synaptic
efficiency according to the correlation of the
presynaptic and postsynaptic activities. This type of
synapse is referred as Hebbian synapse.

Competitive Learning
Competitive learning law, is inspired by learning in
biological systems According to this algorithm the
processing elements compete for the opportunity of
learning. The processing element with the largest
output has the capability of inhibiting its competitors
as well as exciting its neighbors. Only the winner is
permitted an output and only the winner plus its
neighbors are permitted to adjust their weights
(winner-takes-all).

Reinforced Learning Method
In reinforced learning method, a teacher though
available but does not present the expected output but
only indicates if the computed output is correct or
not. The information provided helps the network in
its learning process. A reward is given for a correct
answer computed and a penalty for a wring answer.

III RESULTS AND ANALYSIS

The results for cost prediction using neural network
learning techniques is presented and discussed. For
this purpose neural network tool of MATLAB is
used. Values using COCOMO Model is also
predicted using Basic COCOMO Model.

3.1 Experimental Setup

 Data
Results in neural networks will be calculated by
taking historical data of 50 projects which is divided
into three parts: 20 projects data for training the
network, 10 projects for validating the network and
10 projects for testing the network.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

123

Table 3.1 Data used for training the Neural Network

Table 3.2 Data used for validating the Neural
Network

Project no. Size Effort

41 10.50 10.30

42 42 78.9

43 44 23.2

44 48 84.9

45 50 84.0

46 78.60 98.70

47 130 673.7

48 165 246.9

49 200 130.3

50 214 86.9

Table 3.3 Data used for testing the Neural Network

 Experimental Parameters
Parameters used for performing the operation in
neural networks are as follows:

Parameters Back-

propagation
Learning
Algorithms

Cascade
Correlation
Learning
Algorithms

Network Type Feed-forward
backprop

Cascade-
forward
backprop

Training
function

TRAINLM TRAINLM

Performance
function

MSE MSE

Number of
neurons

20 20

Transfer
function

LOGSIG LOGSIG

No. of epochs 46 46

Table 3.4 Parameters for Neural Networks learning
algorithms in Neural Network Tool of MATLAB

3.2 Evaluations of Results

In this section we will analyze the results of neural
network learning algorithms i.e. Back-propagation
learning algorithms, Cascade Correlation learning
algorithms and COCOMO Model of software
engineering. Comparison of these cost prediction
techniques will be done on the basis of results
evaluated and then values of RMSE and MMRE will
be calculated and compared.

3.2.1 Performance of Effort between COCOMO
Model and Back-propagation Learning Algorithms.

In this section effort using COCOMO Model and
Back-propagation learning algorithms will be
compared. Values are given in the following table.

Project
no.

Size Effort

1 4.20 9.00
2 5.00 8.40
3 7.80 7.30
4 9.700 15.60
5 12.50 23.90
6 12.80 18.90
7 20 73.0
8 24 49.3
9 28 65.8
10 29 40.1
11 30 32.2
12 31.10 39.60
13 35 52.6
14 39 72.0
15 40 27.0
16 41 95.5
17 46.60 96.00
18 46.50 79.00
19 52 58.6
20 57 71.1

Project no. Size Effort
31 2.10 5.00
32 3.10 7.00
33 21.50 28.50
34 22 19.1
35 54 138.8
36 54.50 90.80
37 62 189.5
38 67.50 98.40
39 318 692.1
40 450 1107.3

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

124

Table 3.5 Comparison between COCOMO Model
and Back-propagation learning algorithms

Figure 3.1 Comparison of COCOMO Model and
Back-propagation learning algorithms

Above shown graph indicates that the effort
calculated using Back-propagation is nearest to the
actual effort as compared to the COCOMO Model.

3.2.2 Performance of Effort between COCOMO
Model and Cascade Correlation learning
Algorithm.

In this section effort using COCOMO Model and
Cascade Correlation learning algorithm will be
compared. Values are given in the following table.

Projec
t No.

Size
(KLOC)

Actual
effort

COCOMO
Model

Cascade
Correlatio
n

41 10.5 10.3 28.3 16.6

42 42 78.9 121.5 79.13

43 44 23.2 127.6 83.45

44 48 84.9 139.8 81.84

45 50 84 145.9 80.59

46 78.6 98.7 234.6 84.26

47 130 673.7 398 267.9

48 165 246.9 511.2 245.96

49 200 130.3 625.6 223.66

50 214 86.9 671.6 214.73

Table 3.6 Comparison between COCOMO Model
and Cascade Correlation learning Algorithm

Figure 3.2 Comparison of COCOMO Model and
Cascade Correlation learning algorithm Above shown
graph indicates that effort calculated using Cascade
Correlation learning algorithm is nearest to the actual
effort as compared to the COCOMO Model.

3.2.3 Performance of Effort between Back-
propagation and Cascade Correlation learning
algorithms

In this section effort using COCOMO Model and
Cascade Correlation learning algorithms will be
compared. Values are given in the following table.

Project
No.

Size
(KLO
C)

Actual
effort

Back-
propagat
ion

Cascade
Correlatio
n

41 10.5 10.3 18.5 16.6

Pr
oje
ct
No.

Size
(KL
OC)

Actual
effort

COCOM
O Model

Back-
propagati
onLearnin
g
Algorithm
s

41 10.5 10.3 28.3 18.5
42 42 78.9 121.5 67.83
43 44 23.2 127.6 70.89
44 48 84.9 139.8 74.95
45 50 84 145.9 76.01
46 78.6 98.7 234.6 72.301
47 130 673.7 398 170.72
48 165 246.9 511.2 317.97

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

125

42 42 78.9 67.83 79.13

43 44 23.2 70.89 83.45

44 48 84.9 74.95 81.84

45 50 84 76.01 80.59

46 78.6 98.7 72.301 84.26

47 130 673.7 170.72 267.9

48 165 246.9 317.97 245.96

49 200 130.3 410.79 223.66

50 214 86.9 396 214.73

Table 3.7 Comparison between Back-propagation
learning algorithm and Cascade Correlation learning
algorithm

Figure 3.3 Comparison of Back-propagation and
Cascade Correlation learning algorithms

Above shown graph indicates that effort calculated
using Cascade Correlation learning algorithm is more
nearest to the actual effort.

3.2.4 Comparison of Different Cost Prediction
Techniques

In this section effort using COCOMO Model and
Neural Network learning algorithms will be
compared. Values are given in the following table.

Proje
ct No.

Size
(KL
OC)

Actual
Effort

COCO
MO
Model

Back-
Propagat
ion

Cascad
e
Correla
tion

41 10.5 10.3 28.3 18.5 16.6

42 42 78.9 121.5 67.83 79.13

43 44 23.2 127.6 70.89 83.45

44 48 84.9 139.8 74.95 81.84

45 50 84 145.9 76.01 80.59

46 78.6 98.7 234.6 72.301 84.26

47 130 673.7 398 170.72 267.9

48 165 246.9 511.2 317.97 245.96

49 200 130.3 625.6 410.79 223.66

50 214 86.9 671.6 396 214.73

Table 3.8 Comparison between COCOMO Model,
Back-propagation learning algorithm and Cascade
Correlation learning algorithm

Figure 3.4 Comparison of COCOMO Model, Back-
propagtion and Cascade Correlation learning
algorithms

Above graph shows that effort calculated using
Cascade Correlation learning algorithm is nearest to
the actual effort as compared to other cost prediction
techniques.

3.2.5 Error Prediction of Different Cost Prediction
Techniques

In this section error will be calculated of different
Cost Prediction Techniques.

To calculate the error following formule will be used:

Error = | E – E’
 |

Where

Error is the output error,
E is the actual effort,

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

126

E’ is the estimated effort
In this section
E1 = | E - E’

coc |
E2 = | E - E’back |
E3 = | E - E’casc |

Where
E is the actual effort,
E1 error of COCOMO Model
E’coc is the estimated effort using COCOMO Model
E2 error of Back-propagation learning algorithm
E’back is the estimated effort using Back-propagation
learning
E3 error of Cascade Correlation learning algorithm
E’casc is the estimated effort using Cascade
Correlation learning

Pr
oj
ec
t
N
o.

Size(KL
OC)

Actual
Effort

COCO
MO
Model
(E1)

Back-
propagation(
E2)

Cascade
Correlation(
E3)

41 10.5 10.3 18 8.20 6.2923

42 42 78.9 42.6 11.07 0.22766

43 44 23.2 104.4 47.70 60.2523

44 48 84.9 54.9 9.95 3.0598

45 50 84 61.9 7.99 3.4101

46 78.6 98.7 135.9 26.40 14.14

47 130 673.7 275.7 502.98 405.8181

48 165 246.9 264.3 71.07 0.94078

49 200 130.3 495.3 280.49 93.3566

50 214 86.9 584.7 309.10 127.8354

Mean 203.8 127.5 71.5

Table 3.9 Output error of different cost prediction
techniques

These error values will be used to calculate the
RMSE and MMRE as follows:

RMSE = (√((1/N) (∑((Error)i)
2)))

MMRE = ((1/N) (∑ |(Error)i| / Ei))

Where N is total number of projects

Table 3.10 Perforamnce Evaluation of COCOMO
Model, Back-propagation and Cascade Correlation
learning algorithms

Following graphs shows the comparison using
RMSE(Root Mean Square Error) of different cost
prediction techniques.

Figure 3.5 Comparison using RMSE
Following graphs shows the comparison using
MMRE(Mean Magnitude Relative Error) of different
cost prediction techniques.

Performance
Criteria

COCOMO
Model

Back-
propagation

Cascade
Correlation

RMSE 277.74 208.71 139.15

MMRE 2.1557 1.1072 0.6228

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

127

Figure 3.6 Comparison using MMRE

Comparison using RMSE and MMRE shows that
Cascade Correlation is better than Back-propagtion
and COCOMO Model. Accuracy is high in the
Cascade Correlation.

IV. CONCLUSION

Today, almost no model can estimate the cost of
software with a high degree of accuracy. This state of
the practice is created because:

� There are a large number of interrelated
factors that influence the software
development process of a given
development team and a large number of
project attributes, such as number of user
screens, volatility of system requirements
and the use of reusable software
components.

� The development environment is evolving
continuously.

� The lack of measurement that truly reflects
the complexity of a software system.

To produce a better estimate, we must improve our
understanding of these project attributes and their
causal relationships, model the impact of evolving
environment, and develop effective ways of
measuring software complexity.
We require estimating the cost at the initial stage of a
project, but there is high uncertainty about these
project attributes at initial stage. That’s why the
estimate produced at this stage is inevitably

inaccurate, as the accuracy depends highly on the
amount of reliable information available to the
estimator.
 Here three most popular approaches were suggested
to predict the software cost estimation. In one hand
COCOMO which has been already proven and
successfully applied in the software cost estimation
field and in other hand the Back-propagation learning
algorithm and cascade-correlation learning algorithm
in Neural Network that has been extensively used in
lieu of COCOMO estimation and have demonstrated
their strength in predicting problem. To get accurate
results the neural network depends only on
adjustments of weights from hidden layer of network
to output layer of neural network. We have used the
50 projects data set to validate, train and test the
network. After testing the network it is concluded
that learning algorithms of neural network perform
better then the COCOMO model and from learning
algorithms Cascade correlation performs better then
the Back-propagation learning algorithm. It has less
error values, so accuracy is high in Cascade
Correlation

V. FUTURE WORK

Future work on these topics should include using a
cost estimation data set for which the amount of data
available is not a constraint. A neural network trained
on this data set would provide a more reliable
estimate of a neural network’s ability to produce a
quality cost estimate.
In order to gain further insight to the black box nature
of the neural network cost estimate, decision trees
could be examined. The decision trees could show
the point at which an attribute’s value changes the
software’s cost, and what attributes have the largest
impact on the software’s cost.
The data creation method could also be examined in
order to improve its usefulness. The method as
currently constituted provides more noise in the
created data than is desired. By introducing more
constraints and precedent relationships in the data
creation process, the amount of noise present would
be reduced. This would allow the data creation
process to be used on networks that achieved a good
result value when using their base data set

VI. REFERENCES

[1] Clark, B., Chulani, S. and Boehm, B. (1998),
“Calibrating the COCOMO II Post Architecture Model,”
International Conference on Software Engineering, Apr.
 1998.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

128

[2] Christos Stergiou and Dimitrios Siganos, “Neural
Networks”

[3] Christopher M. Fraser(2000), “Neural Networks: A
Review from a Statistical Perspective”, Hayward Statistics

[4] Nasser Tadayon, “Neural Network Approach for
Software Cost Estimation”, IEEE proceedings of the
International Conference on Information Technology:
Coding and Computing(ITCC ’2005)

[5] S. Kanmani, J. Kathiravan, S. Senthil Kumar and M.
Shanmugam, “Neural Networks Based Effort Estimation
using Class Points for OO Systems”,IEEE proceedings of
the International Conference on Computing: Theory and
Applications(ICCTA’2007)

[6] Ch. Satyananda Reddy, P. Sankara Rao, KVSVN
Raju, V. Valli Kumari, “A New Approach For Estimating
Software Effort Using RBFN Network” , IJCSNS
International Journal of Computer Science and Network
Security, VOL.8 No. 7, July 2008

[7] Kiyoshi Kawaguchi,” Backpropagation Learning
Algorithm”, Wikipedia.org, June 2000.

[8] Cascade Correlation Architecture and Learning
Algorithms for Neural Networks”, Wikipedia.org, Nov.
1995
[9] Konstantinos Adamopoulos,” Application of Back
Propagation Learning Algorithms on Multilayer
Perceptrons”, Department of Computing May 2000.

[10] K. Srinivasan and D. Fisher, “Machine learning
approaches to estimating software development
effort”, IEEE Trans. Soft. Eng., vol.21, no.2, Feb. 1995, pp.
126-137.

[11] Hareton Leung, Zhang Fan, ”Software Cost
Estimation”, Department of Computing, Hong Kong,
1999.

