[JCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 45

ISSN (Online): 2231 -5268
WWw.ijjcsms.com

The comparison of Virtual Machine Migration Performance
between XEN-HVM, XEN-PV, Open-VZ, KVM-FV, KVM-
PV

Igli Tafa', Elma Zanaf?, Elinda Kajo®, Ariana Bejleri, Aleksander Xhuvan?

! polytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania,
itafaj@gmail.com
2polytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania,
ezanaj@gmail.com
3polytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania,
e_kajo@yahoo.com
%olytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania,
arianabejleri@yahoo.com
SPolytechnic University of Tirana, Faculty of Information Technology, Computer Engineering Department,
Tirana, Albania,
axhuvani@yahoo.com

Abstract

Based on our previous experience we want to complaee
performance between five hypervisors: XEN-PV, XEN-
HVM,Open-VZ KVM-FV,KVM-PV We have simulated the
migration of a virtual machine by using a warninglure
approach. Based on some experiments we have coing&e
Consumption, Memory Utilization, Total Migration me and
Downtime. We have also tested the hypervisor'sqerénce by
changing the packet’s size from 1500 byte to 32 bytom these
tests we have concluded that Open-VZ has a bigget C
Consumption than XEN-PV, but the Total Migratiomé is
smaller than in XEN-PV. XEN-HVM has a worse perfamse
than XEN-PV, especially regarding to Downtime
parameter.KVM-FV has the worse performance but an c
improve by modifying it, so in this way we use KVRW which
has approximately the same performance with Xen-HVM

Keywords: Hypervisor, XEN-PV, XEN-HVM, Open-VZ, CPU
Consumption, Memory Utilization, Downtime

1. Introduction

One of the most interesting technologies in théd fief
information technology nowadays is Virtualizatiohhis
technology gives some advantages regarding cogtceso
and energy consumption, tolerance to failuresatsmh to
different attacks etc. Anyway, in this technologgite are

some black spots which have to do with the perfocea

of the applications related to communication speed,
sources or their energy consumption.

To set a virtualization, it's needed to establish a
hypervisor. The hypervisor is the administrator ahd
manager of the sources used by the virtual machirtes
hypervisor can be established above the hardwatehis

is called full virtualization, or it can be establed abouve
the operating system and this is called OS virzasidon.
The full virtualization has got the advantage ttegmate
physical machines with different characteristicsr fo
example Intel x86 with AMD without doing any
modification in Operating System’s kernel. The
performance offered by this type of virtualizatignnot
high (i.e the communication with I/O devices isvglo
memory utilization is not efficient etc). To inreashe
performance is used the paravirtualization approatis
approach requires the modification of the kerneGokst
Operating Systems. It is also required that thegssors
have the same characteristics. In this way, the
communication between applications in virtual maeki
and 1/0 devices will be realized through virtu@ Idrivers
who rise above the hypervisor. This will give acraase

of communication speed between applications and I/O
devices.

One of the most important points in the technolady
virtualization is live migration. This means thativirtual

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 66

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

machine wich is running an application undergoes a
discontinuity or it's CPU is loaded heavily, thehet
application can be migrated from this virtual maehio
another. The virtual machine migration includes like
transferation of page memories that are working th
transferation of the sources that are participatmghis
application (i.e network card, disc etc) and CP&tatus.
Each virtual machine has got it's own CPU, it's own
physical memory (which is shared between different
virtual machines), it's own /O etc. Memory migiati is
the most crucial point of virtual machine’s migoati
There are some methods of it's migration, but thestm
used is the iteration method with Pre-Copy approdch
this method, at first are transferred the modiffgabes
wich are registered from a table in memory wich is
managed by XEN. This table is created with bitmap
method which marks with “1” anytime a memory page
written. The modified pages are iterated again tim end
when CPU'’s status is transferred. In this methdm t
interruption time “downtime” because of the migoatiis

not high, it is calculated in the order of milisads,
despite of migration capacity.

In our article we have studied five types of hypsors and
we have measured their performance regarding the
skedar’'s time of transfer, CPU efficiency and meynor
exploitation from an virtual machine to another the
same physical host or between virtual machines in
different physical hosts. The tested hypervisoes Xéen-
PV, KVM-FV, OpenVZ, Xen-FV and KVM-PV. Xen and
KVM hypervisors rise above the bare hardware, waere
OpenVZ is a hypervisor which rises above the Host
Operating System.

GuestOS1 | GuestQS2 || GuestQSl | Guest(S2

Host 05

Host 05

Hardware

Computer's

Computer's
Hardware P

Hardware

Full Virtualization 08 Virmlization

Parwirtalization
Fig.1 Three types of Virtualization

Xen Hypervisor can pass from a PV level to FV if iaese
Xen/Qemu. This will make possible the emuliationl/af
drivers in user’s space. To achieve this is nedbatithe
hardware supports this technology. Intel and AMD
processors recently support virtualization (Intel dhe
AMD-V). Using these processors we can raise thd Ful
Virtualization technique. This means that a Guest@s

be a Windows XP. These processors use VTX/SVM
instructions. Generaly Full Virtualization decremstne
communication’s performance with /O disks. This
technique used by Xen is often called Xen-HVM. Wdlys
HostOS is called Dom0 and GuestOS is called DomU.
Unlike Xen-HVM where an application uses two system
calls to access a hardware driver, Xen-PV usesiapec
calls who will offer the possibility to access vial drivers
who are managed by DomO and can be connectedIdirect
with the hardware. Referring to XenPV, the hypesvises

in ring 0, whereas GuestOS lie in ring 1. The agglons
are in the third ring, the secong ring is not udéa it's
shown in Figure 2. In Xen-HVm the ring 0 is resehfer
GuestOS and the virtualized hardware lies in ring 1

It has also been used a modification in KVM hypgovi
This is a hypervisor which is taken directly frormux’s
kernel adding some modules that convert it in a
hypervisor. It's disadvantage is that it requirésttthe
Guest OS is Linux-based. They don’t need to getifiead

All 1/0 devices do map in /dev/kvm. This hypevisor’
code generally is small, at about 10000 rows. Usineg
“virtio” technique which makes it possible the dms
virtualization offering a better management of API
interface between GuestOS dhe KVM kernel, we cas pa
from Full Virtualization in Para-Virtualization.

OpenVZ is an OS Virtualization. GuestOS is called
container or Virtual Private Server. Unlike Xen KYM
where each Guest has got it's own kernel, in OpeaWZ
the containers have one kernel in common with the
HostOS. Anyway every GuestOS has got it's own 1B, i
own I/O and it's own memory. Since every GuestO8 is
process in OpenVZ hypervisor, this method offelseter
possibility than Xen and KVM in scalability but wesa in
isolation. OpenVZ can modify the Linux’s kernel igig to
every unmodified Linux-based OS the possibility He
executed as a process in Linux.

All the above hypervisors support the SMP (Symetric
Multi Processor) technique. This means that some
GuestOS can use some host processors at the saee ti

2. Related Works

In [1] is done a comparison between HPC in KVM amnd
OpenVZ. In this article is tested the throughputeading
and writing in a SAS (Serial Attached SCSI) disd as
concluded that the throughput performance in readn
better in KVM than in OpenVZ, but it doesn’t happte
same in writing. It is also tested the Round Tiipet from

a host in another with the same application witperyisor
KVM and OpenVZ. The increase of the packet size
transmitted causes an increase in the latency ef th
transmission in the hosts with KVM hypervisor. Alao
interesting comparison is the measurement of thdnme

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

transmission speed from a host to another referting
KVM-PV and KVM-FV. From the results is seen that
KVM-PV has got the best speed.

In [2] is shown the difference between KVM, Open&izd
XEN and is analized their performance using SPECCPU
2006, RAMSPEED 3.4.4, Bonnie ++ 1.03, NetlO
126,SPECJBB 2005 benchmarks. The testings show that
KVM has got lower processing than the other two
hypervisors. This happens because KVM has got gebig
overhead than the other hypervisors, this big ceedhis
introduced from the complexity of QMU emulator.
Anyway from [1] we understand that there are charioe
performance improvements since we are not in a
bottleneck. Using RAMSPEED benchmark we see that
data copying in memory is slower in KVM than in two
other hyervisors. This happens because of APIfaxter
Since KVM has got Full-Virtualization, the accessda
communication of GuestOS with the applications @&ov
them wich is done using this interface is slower.[2]
using Bonnie++ benchmark is measured the performanc
in reading and writing for 3 discs SAS with 5 GBfand
1GB RAM. From the experiments done in [2] it can be
seen that OpenVZ has got the highest speed, th&eris
and at last KVM. The speed in reading is almostsidmme.
OpenVZ has got a good performance because the
hypervisor introduces a smaller complexity then tie
other cases, expect that GuestOS in OpenVZ aréetrea
like processes and have a common kernel with tee ho

In [3] are used different measurements using differ
tools like “pktgen”, a module that incorporates Linux’s
kernel and serves to generate traffic (packets diffbrent
sizes) from one host to another. Another benchroalled
“stress tool” is used to measure CPU consumptioh an
memory utilization. It is noticed that when packesize
decreases from 1500B to 32B, it is not utilized Wiele
bandwidth offered for all the hypervisors, anyway
OpenVZ has the best performance and KVM has the
worst. In [3] is tested the case when are usecerdifit
streams using packets withdifferent sizes for three
hypervisors from an virtual machine to another in a
computer network connected with a gigabit switchall

the tested cases, OpenVZ has the best performartte a
then is XEN. By using 32 B packet size KVM-FV
collapsed.As it look from tests CPU consumption in
KVM-FV reach to 100%.0pen VZ has the best
performance because it is simple, it shares thedamel
between GuestOS and HostOS. In Xen Hypervisor
GuestOS and HostOS has different kernel but the
paravirtualization approach offers some benefits this
Hypervisor.

In [4] is tested the performance between XEN and
OpenVZ. In this system is built for the first tintae
multilayer approach where Web Server works in a&day

67

DB works in another layer and the PHP interfaceksadn
another layer. Using this multi-layer approach,
system’s performance in scalability, isolation apeed is
higher than in analogue cases [5], [19]. The ta®#duto
measure their performance is called RUBIS. When the
number of the applications increases, the avereggonse
time of the packets RTT in OpenVZ is four times Bema
than in the first case. This happen because XE eha
bigger overhead than OpenVZ. Based on [4] therado¢

of miss cache for instruction in L2 cache. Anyw&gm

[4] is seen that OpenVZ consumes more CPU because o
the common kernel between the host and guests and
because of the fair CPU sharing between contairiess.
measure the overhead here is used the tool “Apfofi
This tool generates data anytime there is a Haeweent,

i.e anytime it happens a miss cache. This tool if6]
adapted to the XEN performance and is called
“Xenoprof”. To measure the CPU consumption in XEN
used the tool “ xentop -b” wich gives detailed
information about the CPU consumption of every
GuestOS. There isn’t any specific tool to meashieeGPU
consumption of the containers in OpenVZ, anywayeher
the data here are measured from the generatidredfrhe
report wich gives the time CPU spends in every @ioet

in /proc/vz/vstat. To measure the performance arev
hypervisor is used RUBIS benchmark wich can inaeas
the CPU load increasing the number of threads gésedr
by a script in C. is measured the throughput, gsponse
time of the packets and CPU consumption. In aliheke
three cases is concluded again that OpenVZ habdbe
performance.

In [4] is shown that the creation of a multilayerdidc
increases the migration performance of virtual nreeh
Based on [20], Xen has a better scalability tharivkiich

for 3VvVM, 6VM, 10VM, 11VM undergoes crash. But
anyway Xen has lower scalability than OpenVZ, bseau
for OpenVZ the GuestOSs are processes, although the
consume a lot of memory and processing [7]. Inrezfee

[8] is compared the performance of CPU consumphion
the same applications between XEN-PV, Xen-FV, KVM-
FV and KVM-PV. It is seen that XEN-PV consumes less
CPU. To measure the CPU performance here is uged th
tool ‘SAR”. XEN-PV has the highest speed of wrgin
SAS disc, and KVM-PV wich uses “virtio” driversds

got the lowest. To tealize the Full VirtualizationKVM

is used the e1000 driver emulator, and to build XEBN
HVM is used RealTeck 8139 driver emulator. In temifs
TCP throughput from a VM to a remote host, XEN-PAs h
the best performance followed by KVM-PV. This
performance increase of KVM-PV is because of the
improvement of the communication interface between
GuestOS and Kernel OS in ABI interface. Using the
“Stream” benchmark is measured memory’'s bandwidth

IJCSMS
www.ijcsms.com

the

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 68

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

KVM-FV consumes less bandwidth, and XEN-KV
consumes more than the others. KVM-FV has the Isigge
latency in copying the files in higher memory.

3. Background

In this article we want to test three parameterBUC
Consumption, Memory Utilization Total Time Migratio

and the Downtime of the virtual machine due to a

controlled failure. To create a controlled failuseused a
tool of CentOS 5.5 called “"Heartbeat”. Using thaol we

will get notified if a machine has “dead” and gbe

Hypervisor will migrate the applications (actuatigt only

the applications) that were running in the “deatiachine
to maintain the continuity. In our article we witalize a
script in C wich will simulate the stop of the vl

machine in the physical host, regardless the faat in

reality it hasn't stopped yet. So, the virtual maehin the
first host will finish it's execution only in the ament that
the virtual machine will start it's execution inetiphysical
host where it is migrated. In this case the perforoe will

be better than the case when “Heartbeat” actsmadly

[9]. The case of the study of an uncontrolledufal will

be a study object in the future. However, we wiamine
the case when the virtual machine is relocatethénsame
physical host, without passing the network. Theuair
machine’s migration passes some steps:

a. The migration of memory pages that are in RAM
who belong to the application that was being
executed in the virtual machine.

b. The migration of the drivers of /0O devices.

c. The migration of virtual I/O discs as part of the
activity of the virtual machine.

d. The migration of CPU-statuses.

This method is called pre-copy (The best approadbost-
Copy but we couldn’t use it)[10]. The purpose istth
during the migration of the applications, to redtloe time
of the interrupt down-time as much as possiblepie-
copy approach, the down-time is lower, but thereais
problem with the total time of te migration as aulé of
the iteration of dirty pages, which are saved ihitsnap
table in RAM. As we know all the virtual machineavie
the possibility to share the common memory, I/Ccslis

CPU etc and all these processes are managed by the

hypervisor. The application that is going to beddss a
180MB application played online (game). We will

examine the parameters mentioned above using the

hypervisors:
XEN-PV, Xen-HVM, Open-VZ, KVM-FV, KVM-PV.

We have used a computer and have exploited it thel
possible cases. The parameters of the computeawe h
used are:

Intel Core i7 920, Quad Core +, L2 4x256 KB, L3 ¥8,
Asus, Three Channel DDR3 1600 Mhz, RAM 3x2GB, 64
bit processor, Hyperthread Technology, Freq 3.2, Ghz
Support, Turbo Boost Support.

We will start the experiment with XEN-PV and theithw
all other hypervisors until KVM-PV. The purpose tis
find the hypervisor with the better performanceiigithe
migration of a virtual machine.

4. The experimental phase

4.1 The simulation of warning failure in x0
virtual machine

Referred to figure 2, initially we will prepare aaming
failure of x0 virtual machine. It means that xO twal
machine in reality is operating, but the hyperviaod the
other virtual machine built above the hypervisoe ar
informed from heartbeat tool which is included ianBOS
5.5, that it is stopped as we explained in sec8orTo
simulate a warning failure we should create a sénpC
programming language and we call Heartcare. This
script is located in /proc and sends a messageddbeat
every time we want to execute it. At this momerdrtigeat
is informed for the virtual machine which shouldt ge
interrupted (in our example it is x0 virtual maakipand at
the same time heartbeat informs x1 virtual mactdand
Xen Hypervisor for this situation. Thus the hypsori
begins to migrate x0 virtual machine to x1 virta@chine
based on pre-copy approach, which is explaineedtian

3.

Virtual Machine Virtual Machine
XC X1

HYPERVISOR

Figure 2. Two Virtual machines that Lay above thgpétvisor

4.2 Xen-PV

As we explained in section 3 initially we have aikd
Xen as hypervisor, above it is installed DomO with
CentOS 5.5 version and 2 virtual machines DomU

IJCSMS

www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 69

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

(GuestOS) each has Ubuntu 10.04 Server instalied0l
virtual machine is executed a 180 MB application.

4.2.1 CPU consumption in Xen Hypervisor before and
after the migration of x0

At first we will evaluate CPU consumption of Xen
Hypervisor before migration the x0 virtual machifidne
migration occurs at the moment when a warning ffailu
signal fromheartcare script is sent to “Heartbeat” tool. To
evaluate the CPU consumption in Xen first we hagerb
located in /proc directory and typed the commanttog —

b. The output results of this command are savea in
matrix form in a script callekenCProc which is located

in /proc/xen. This script presents the CPU consiongor
every 5 sec. At the moment when we push s key én th
keyboard it will give us the average of CPU constiomp
up to this moment. The value %23%. This is because
the resources, memory consumption, virtual disk3, I/
virtual network etc are not being used heavily.

After x0 virtual machine is migrated, the CPU
consumption at the first moment increases slighhgn it

is increased up 18,63 %, in 1,65 sec; this is the peak of
consuming, because of page faults. When the pagdts fa
increase, the CPU consuming increases too. Thidtres
depends from the iteration of dirty pages which are
maintained by bitmap table in “Grant Shared Table”
located in RAM and managed by the Hypervisor. As it
looks in table 1 after 2,54 sec CPU consumptioneseses

to 3,11%. After 3,66 sec CPU consumption is decreased to
2,11%. This is the stabilized value. If we compare both
cases before and after migration, the CPU consompti
after the stabilization phase in the second caseecdses
up to 0,12%. The reason is the reduction of resmurc
which were implemented to x0 virtual machine.

Tab 1. CPU consumption in Xen Hypervisor after x@ual machine is
migrated to x1.

CPU rate consumption (%) Time (sec)
2,23% 0

9,63% 1,65

3,11% 2,54

2,11% 3,66

42.2Memory utilization in Xen Hypervisor before and
after xO migration

To evaluate the memory utilization in Xen before
migration we will use the tool named “MemAccess”
located in /etc [11]. Initially the memory utiliten is
10,6 %. After the migration of x0 virtual machine,
memory utilization increases 10,7% for 1,55sec.sTiki
the peak of memory utilization value. After thaluathe
memory utilization will be stabilized at 10,5% a02 sec (

see table 2). If we compare the memory utilizaiiertia
with CPU consumption, it is clear that the memoas h
more stability because of it's native nature. Dgrthe
migration in memory are just added some extra code
(pages migrated from x0 virtual machine). This axtode

is replaced in dirty bit map table located in Gr&hiared
Table.

Tab 2. Memory Utilization in Xen Hypervisor afted xirtual machine is
migrated to x1.

Memory Utilization Time
10,6% 0

10,7% 1,55
10,5% 2,04

As it look from table 2 the stability of memory ligation
happens after 2,04 sec from the migration prodésse
compare table 1 and table 2 again, the peak of memo
utilization happens after 1,55 sec while the pebiCBU
consumption after 1,65 sec. This is because thetiba
process does not affect directly to memory butffiécts
CPU consumtion. Also the CPU should adapt some
additional parameters during the migration such as
memory management, 1/0O disk refresh etc.

4.2.3 Average Total Time migration of xO0 virtual
machineto x1.

Initially we should clarify that the migration hascured

in the same physical host. At the moment wheartcare
script send a message to heartbeat tool to crastirtx@l
machine, a counter is programmed to start and it is
implemented into that script. This counter will exade the
total transferring time. At the end of migrationogmer
message is sent to heartcare script. This messagent
from XenCProc script because the last of phase of pre-
copy migration is dedicated to CPU status of xQuair
machine [10]. The CPU status can be identifiechgisi
XenCProc script because the CPU status is the first
argument saved in stack [12]. The ID of CPU staduis

the end of the transfer. At the final transfeXenCProc
sends a message twartcare script. The total time is
shown in display. The average total transferringetiin
our test is evaluate?, 66 secThis is a very effective time,
because the application installed is 180 MB (ofrseyjust

a little size of this application is being transféy because
most of this is located in the hypervisor whiclsiiilar to

a SAN device between two virtual machines, thisas
part of our study).

4.2.4 Downtime during the migration of xO virtual
machineto x1 virtual machine.

This is a very critical case, because live migratuhase
depends from this parameter. To evaluate the daventi

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 70

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

we will refer to XenCProc. Based on [10] downtinse
evaluated as the transfer time of CPU status. Thes
should evaluate the total transferring time of Paog
Counter Register (also the same thing will be doitl

the execution instructions at the moment when taming
failure occurs in x0 virtual machine) of x0 virtualachine

to x1 virtual machine. PC register is encapsulatethe
shared memory of the Hypervisor. So in the sameneran
with total transferring time transferring we shoidéntify

the last process. As we know when an interrupt s;cu
CPU saves its status and PC counter. So we should
identify the ID of the first process. This ID iscoeded in
XenCProc at the moment when heartbeat stops x0 virtual
machine, then it passes to /proc/xentop file.

The downtime algorithm is:

1. Heartcare sends a message to XenCProc
XenCProc saves the ID of the first process
Then we type xentop command

ID process is transported to xentop file

o bk wN

CPU status is transferred, it send automatically a
sys_call to the hypervisor

6. Xen look the xentop file and starts the CPU status
in x1 virtual machine

7. The downtime is saved at XenCProc
8. Itis ahowed in display

The downtime is evaluatetims It is a small value. There
are some reasons:

1. We are doing a migration inside a physical host
2. CPU is very fast, see section 3.

3. There are some extra parameters such as Turbo
BOOST

4. The application is not big (It can be considered
small, only 180 MB)

5. There are no data dependency [13] etc.

Now we will repeat from a-d the experiments by aiag
the MTU (Message Transfer Unit). By changing theUMT
value, the packet size will change automaticaltywill
affect the transferring time, downtime, memoryigétion
and CPU consumption too. The data packets areféraals
from network virtual driver of x0 virtual machine 1.
Both virtual drivers form a team and are connedigdc
bridge soft which is managed by Xen. To change the
packet data size we can change MTU from 15008, hwhic
is standard of Ethernet Network Adapter, to 100énd 32

B. For each VM we type the command:

I fconfig ethO mtu 1000

This is a temporary value and we suppose that palsia
size is 500 B. We should clarify that the resudtisen till
now belong to the case when the packet data sizB(8

B.
MTU = 1000 B

Tab 3. CPU consumption in Xen Hypervisor after x@ual machine is

migrated to x1.

CPU rate consumption (%) Time (sec)
224 % 0

10,76% 1,72

3,3% 2,89

2,25% 3,8

Tab 4. Memory Utilization in Xen Hypervisor afted xirtual machine is

migrated to x1.

Memory Utilization Time
10,9% 0
11,2% 1,77
10,8% 2,26
MTU=32 B

Tab 5. CPU consumption in Xen Hypervisor after x@ual machine is

migrated to x1.

CPU rate consumption (%) Time (sec)
12,66 % 0

28,2% 3,16
19,45% 4,91
12,04% 5,97

Tab 6. Memory Utilization in Xen Hypervisor afted xirtual machine is

migrated to x1.

Memory Utilization Time
14.2% 0

16,9% 5,66
14,3% 7,54

If we compare the tables 1-6,

we see that the CPU

consumption increases when packet data size desreas
The same thing happens with the memory utilizatidme
reason is the increasion of the overhead becausdl sm
packets have more context switch and more overfiedd

Tab.7 The Average Total Migration time and Dowririor different

MTU sizes

Packet data size Average TotaDowntime
Migration time of
x0 VM

1000 B 3,8 sek 7ms

32B 5,8 sek 11 ms

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 71

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

4.3 Xen-FV

If we want to use Xen as a Full virtual machinesheuld
have a hardware that supports it. As we see inose8tthe
parameters of our computer match with our requirgme
[15]. Also we should built QEMU on Xen, thus we gltb
emulate the hardware in user space [16,17]. Thé Ful
virtualization in Xen has the same characteristis
VMWare which means that we can built OS with diéietr
native nature and different architecture, such é@sddivs

in DomU. Also in Full virtualization it is not nessary to
modify kernel OS Host or Guest. Nevertheless Full
Virtualization has some disadvantages such asittrease

of access time in 1/O disks, because there area@ tr
instruction to access a disk[18]. The Full virtmation
includes an additive complex layer presented by QEM
emulation software. In order to emulate networkehs in
both GuestOS we should install e1000 emulator dot/r
directory.

MTU 1500 B

Tab 8. CPU consumption in Xen-HVM after x0 virtuatachine
migration in x1.

11,9 2,31
11,5 2,98
MTU=32 B

Tab 12. CPU consumption in Xen-HVM after x0 virtuakachine is

migrated to x1.

CPU rate consumption (%) Time (sec)
16,7 0

36,2 47

26,5 7,61

16,9 9,25

Tab 13. Memory Utilization in Xen-HVM after x0 viral machine is

migrated to x1.

Memory Utilization Time
154 0
18,1 6,1
15,1 8,2

If we compare the tables 8-13, the
memory utilization in Xen-HVM are bigger than in e

PV.

CPU consumgaiad

Tab.14 Average Total Migration time and Downtinoe @lifferent MTU

CPU rate consuming (%) Time (sec) size

2,66 0

10,52 2,14 Packet data size Average Total tim@®owntime

4,08 3,25 migration of x0_VM

3,16 431 1500 B 4,10 sec 8 ms
1000 B 4,77 sec 10 ms
32B 8,52 sec 27 ms

Tab 9. Memory Utilization in Xen-HVM after x0O viral machine is

migrated to x1.

Memory Utilization Time
11,5 0
11,9 2,26
11,5 2,84
MTU = 1000 B

Tab 10. CPU consumption in Xen-HVM after x0 virtualchine is

migrated to x1.

CPU rate consumption (%) Time (sec)
2,88 0

11 2,34

4,5 3,46

2,79 4,67

Tab 11. Memory Utilization in Xen-HVM after xO viral machine is

migrated to x1.

Memory Utilization

Time

11,6

0

As it look from the table 14, downtime and Averdgsal
time are increase when the number of packet size is
decrease especially when Packet data size re&hBo

4.4 OpenVZ
4.4.1 The Evaluation of CPU consumption in OpenVZ

To evaluate the CPU consumption in OpenVZ we don't
have any specific tool nevertheless we can meahae
CPU wasted time in /proc/vz/vstat. To evaluate @rU
consumption we create a script in C which is called
traceproc. It traces the active and idle processes in
hypervisor by scanning the status of each processtat

file. Each process has a wake bit in Process Status
Register, if it is 1 this process is active andt ifs 0 the
process is idle. ITraceproc script located in /proc/vz we
have implemented a formula:

The availability of the process= (Time for each iaet
process)/(Total CPU time) x100% (1)

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 72

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

The sum of the availability active processes = CPU
Availability 2

In reality this formula doesn't calculate the CPU
availability, because when the processes are lidig $till
spend CPU time, consequently their consume CPUs Thu
for the idle process we should build a semaphorzbiz

[7] in order to make them sleep. In this way thal} not
consume CPU. Semaphore variables are built iniptsor

C called semaphore which records the ID of all idle
processes. This information is taken frofmaceproc
script. For each passive process we generate adthre
which sends a signal to these processes. In thimenathe
passive processes are transformed in sleep precesse
the moment when CPU sends an interrupt messagméor
of the sleeping processes, the semaphore scripeifirst
that takes this signal. This script reads the IDcalling
processes, records it in a specific address inspeific
register and then calls the specific thread. Thread
wakes up the sleeping process. Thus the procestakan
the interrupt launched from CPU. This is a verygtaous
approach because the script is implemented in spsre,

it means that after the interrupt request from CHig
generated thread can't wake the process up. Sortieess

is going to sleep forever. Nevertheless after this
modification totraceproc script we will evaluate the CPU
consumption by using the formula:

CPU consumption= Sum of active processes/ Totafnr
process 3)

We should emphasize that this script gives us an
approximately value of CPU consumption in OpenVZ
hypervisor.

4.4.2 The evaluation of Memory Utilization in Open\Z

We have to use a tool namstteam_tool [8] to evaluate
the memory utilization. There is one problem, ttosl
cannot evaluate the dynamic changing i.e the iteradf
dirty pages while the x0 machine migrates to x1.w&o
should build a script that finds the number of pémdts
and multiples them with the page size. Neverthelgess
cannot find the appropriate number of transferrages in
a unit of time in case a page miss occurs. So weldh
implement another tool calledBonnie ++ which
calculates the bandwidth transfer for 2 disks. Viket
RAM_VM1 as first disk and RAM_VM2 as second disk
and we can calculate the total number of transfiepages
for each iteration by using the formula:

The nr of transferred pages= Total size transfe(&4
Page size (4)

The calculated fromstream benchmark at 0 time:

Total memory utilization=

(Time before a page faul

occurs) + (Nr of transferred page while a page tfaul
occurs) x (Nr of page faults) x (Page size) (5)

All these formulas are implemented MemO script,

written in C language.

4.4.3The evaluation of transferring time and downtine

To evaluate the transferring time we can use thmesa
script we did in previous cases, but this scrigbcated in

/procivz.
MTU 1500 B

Tab 15. CPU consumption in OpenVZ Hypervisor afiér virtual

machine is migrated to x1.

CPU rate consumption (%) Time (sec)
2,24 % 0

9,67% 1,52

3,20% 2,24

2,18% 3,04

Tab 16. Memory Utilization in OpenVZ Hypervisor eftx0 virtual

machine is migrated to x1.

Memory Utilization Time
10,8% 0
10,9% 1,42
10,8% 1,57
MTU = 1000 B

Tab 17. CPU consumption in OpenVZ Hypervisor afiér virtual

machine is migrated to x1.

CPU rate consuming (%) Time (sec)
2,26 % 0

10,1% 1,65

3,34% 2,71
2,26% 3,28

Tab 18. Memory Utilization in OpenVZ Hypervisor eftx0 virtual

machine is migrated to x1.

Memory Utilization Time
11,2% 0
11,7% 1,45
11,2% 1,89
MTU=32B

Tab 19. CPU consumption in Xen Hypervisor aftervik@ual machine is

migrated to x1.

CPU rate consuming (%) Time (sec)
25,4 % 0
42,6% 7,2

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

73

34,9% 10.6

[2,78

| 541

24, 2% 13,7

Tab 20. Memory Utilization in Xen Hypervisor afte® virtual machine
is migrated to x1.

Memory Utilization Time
18,2 0
21,4 7,5
18,1 10,4

If we compare tables 15-20 in OpenVZ, the CPU
consumption and memory utilization is just a litthé
more then the parameters in Xen, the reason isaththe
Containers and Hosts share the same fair resosuchsas
CPU, but the transition time in OpenVZ is smalleert
that on Xen-PV, because in OpenVZ each container is
considered a process.In the future we will analtlze
inertia while the packet data size are changing.

Tab.21 Average Migration Total time and Downtiméhwdifferent
MTU sizes

Packet data size Average TotaDowntime
Migration time of
x0 VM
1500 B 2,06 sec 3 ms
1000 B 2,42 sec 4 ms
32B 11,2 56 ms

In Tab 21 is presented the Average Total Migratiore of
x0_VM is smaller than that of XEN. The same thing
happens with downtime. The reason is the low coxilyle

of OpenVZ, Overhead and Context Switch; becausé eac
container is considered a process.

4.5 KVM-FV

Other Hypervisor is KVM-FV which is implemented by
modified Linux Kernel module. In our test each wat
machine network driver has emulated from e1000edriv
For evaluation the CPU consumption for KVM Hypeoris

we have used a tool called SAR Utility. For evaluathe
Memory Utilization we have modified an open source
stress tool by configuring it. To test the Averabetal

time transferred and Downtime we have used the same
script located on /dev/kvm

MTU 1500 B

Tab 22. CPU consumption in KVM-FV after x0 virtuahachine
migration in x1.

CPU rate consuming (%) Time (sec)
2,82 0

11,64 3,07

3,46 4,86

Tab 23. Memory Utilization in KVM-FV after x0 viral machine is

migrated to x1.

Memory Utilization (%) Time (sec)
13,8 0

15,6 3,76

13,7 4,25

MTU = 1000 B

Tab 24. CPU consumption in KVM-FV after x0 virtuadachine is

migrated to x1.

CPU rate consumption (%) Time (sec)
3,64 0

16,4 3,562

6,45 5,23

3,6 6

Tab 25. Memory Utilization in KVM-FV after x0 viral machine is

migrated to x1.

Memory Utilization (%) Time (sec)
14,99 0

18,63 4,01

14,7 5,03
MTU=32B

Tab 26. CPU consumption in KVM-FV after x0 virtualachine is

migrated to x1.

CPU rate consumption (%)

Time (sec)

69,89

0

99,98

45 approximately

It can’t be calculated

It can't be calculated

Tab 27. Memory Utilization in KVM-FV after x0 viral machine is

migrated to x1.

Memory Utilization (%)

Time (sec)

474

0

78,2

21 approximately

It can’t be calculated

It can’t be calculated

If we compare the tables 8-13,

the CPU consumptitd

memory utilization in KVM-FV are bigger than in Xen
HVM. When the packet data size reach to 32 B tistesy
going to crash while the migration occurs. Smaltkeds

bring to a large increasement of overhead and xbnte

switch between processes which are calculated €&fd.
There are transmitted over the virtual network elrsv

Tab.28 Average Total Migration time and Downtinoe @lifferent MTU

size

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 74

ISSN (Online): 2231 -5268

WWW.ijjcsms.com

Packet data size Average Total timeg Downtime (ms) CPU rate consumption (%) Time (sec)
(B) migration of x0_VM 16,7 0

1500 B 4,82 sec 11 ms 76,2 6,2

1000 B 5,6 sec 14 ms 49,5 14,7

32B No limit No limit 16,8 29,6

As it look from table above, KVM-FV has the worse

performance compared with other hypervisors.
4.6 KVM-PV

This is the last Hypervisor in our paper. KVM-PV ane
that we should modify the kernel of GuestOS andt@8s
We should install virtio driver for each Guest. KVRV
may improve the performance of KVM especially iméi
transferred and downtime.

MTU 1500 B

Tab 29. CPU consumption in KVM-PV after x0 virtuahachine
migration in x1.

Tab 34. Memory Utilization in KVM-PV after x0 virad machine is

migrated to x1.

Memory Utilization Time
15,9 0
31,4 8,9
16,2 9,7

As it look from above tables KVM-PV has better
performance than KVM-FV and it is approximately the
same with XEN-HVM but it degenerate at the moment

when packet data size reach to 32 B.

Tab.35 Average Total Migration time and Downtinoe dlifferent MTU

CPU rate consuming (%) Time (sec)
2,61 0

10,1 2,11

3,87 3

2,86 4,1

Tab 30. Memory Utilization in KVM-PV after xO viral machine is

Size
Packet data size Average Total tim®owntime
migration of
x0 VM
1500 B 4,04 sec 9 ms
1000 B 5,1 sec 12 ms
32B 25,42 sec 81ms

migrated to x1.

Memory Utilization Time
11,4 0
11,9 2,2
11,3 2,8
MTU = 1000 B

Tab 31. CPU consumption in KVM-PV after x0 virtualachine is

migrated to x1.

CPU rate consumption (%) Time (sec)
2,8 0

11,1 2,4

4,53 3,45

2,8 4,69

Tab 32. Memory Utilization in KVM-PV after x0 viralk machine is

migrated to x1.

Memory Utilization Time (sec)

11,5 0

11,9 2,27

11,5 2,88
MTU=32 B

Tab 33. CPU consumption in KVM-PV after x0 virtualachine is

migrated to x1.

5.Conclusions

From the above experiments we conclude the
following results:

1. CPU Consumption and Memory Utilization
in XEN-PV are lower than in Open-VZ
because Open-VZ uses the same kernel for
Host OS and Guests OS by fair sharing the
CPU. XEN has got a better sharing of the
CPU between Host OS and Guests OS.

2. XEN-HVM consumes more CPU because of
the emulator's complexity (QEMU).

3. All the parameters for the three hypervisors
increase with the decrease of packet's size.
This causes a slower performance.

4. The Total Migration Time and Downtime are
smaller in Open-VZ than in XEN because in
OPEN-VZ the overhead is smaller (every OS
works as a process).

IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science &Management Studies, Vol. 11, Issue 02, August 2011 75

ISSN (Online): 2231 -5268
WWW.ijjcsms.com

5. KVM-FV has the worse performance in CPU
Consuption, Memory Utilization, Total Time
Migration and DownTime

6. KVM-PV offers an improvement of
performances compared with KVM-FV, but
it asks modified of Guest kernel

6.Future Works
As a future intention we would want to:

1.Test and compare the performance for five hygersi
XEN-HVM, XEN-PV, Open-VZ, KVM-FV and KVM-PV
in a LAN.

2.We will test these hypervisors not using a wagnin
failure, but simulating an unwarning failure.

3.We will test the performance of these hypervibgr
using FTP and HTTP approaches

4. We will analyze the inertia while the packetadatze
are changing between differenc Hypervisors

7.REFERENCES

[1] Nathan Regola, Jean-Christophe Ducom, 2010,
“Recommendations for Virtualization Technologies

in High Performance Computing”

[2] Jianhua Che, Qinming He, Kejiang Ye, and Dawei
Huang, 2010, “Performance Combinative Evaluation of
Typical Virtual Machine Monitor”

[3] Daniel Schlosser, Michael Duelli, and Sebasizwil,
2010 “Performance Comparison of Hardware
Virtualization Platforms”

[4] Pradeep Padala, Xiaoyun Zhu, Zhikui Wang, Sthara
Singhal, Kang G. Shin, 2007, “Performance Evaluati
Virtualization Technologies for Server Consolidatio

[5] Christopher Clark, Keir Fraser, Steven Handkola
Gorm Hanseny,Eric July, Christian Limpach, lan Brat
Andrew Warfield, 2009, “Live Migration of Virtual
Machines”

[6] A. Menon, J. R. Santos,
Janakiraman,and W. Zwaenepoel,
performance

overheads in the Xen virtual machine environment”.

[7] Andrew Tanenbaum, 2009, Modern Operating System
4-th edition, chap 2 processes and threads.

[8] Lucas Nussbaum, Fabienne Anhalt, Olivier Modhar
Jean-Patrick Gelas “Linux-based virtualization t6PC
clusters”

[9] Espen Braastad, 2006, Management of high aviitha

services using virtualization
[10]Michael R. Hines, Umesh Deshpande, and Kartik
Gopalan, 2007, “Live migration with post copy”

[11] Jin Heo Xiaoyun, Zhu, Pradeep Padala, Ann Arbo
Zhikui Wang, 2009, “Memory Overbooking and Dynamic
Control of Xen Virtual Machines in Consolidated
Environments “

[12] Andrew Tanenbaum, 2009, Modern Operating
System 4-th edition, chap 2, Semaphores

[13] John Henessy, David Peterson, Computer
Organization and Design 4 —th edition, 2010, chap.4
330, “Pipeline Data Path and Control”

[14] Andrew Tanenbaum, 2009, Modern Operating
System 4-th edition, chap 3, Size of Page Memory

[15] Nathan Regola, Jean-Christophe Ducom, 2010,
“Recommendations for Virtualization Technologies

in High Performance Computing”

[16] Chungiang Tang, 2008, FVD: a High-Performance
Virtual Machine Image Format for Cloud

[17] Daniel P. Berrang'e, 2007, Taking full advaygeof
QEMU in the Xen userspace

[18] Andrew Tanenbaum, 2009, Modern Operating
System 4-th edition, chap 1, Virtual Machines

[19] Katharina Haselhorst, Matthias Schmidt, Roland
Schwarzkopf, Niels Fallenbeck, Bernd Freislebenl(®0
“Efficient Storage Synchronization for Live Migrati in
Cloud Infrastructures”

[20] Todd Deshane, Zachary Shepherd, Jeana N. Mathe
2010, “ Quantitative Comparison of Xen and KVM”

Y. Turner, G. J.
2005. “Diagnosing

IJCSMS
www.ijcsms.com

