
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

56

Better Management of Defects for Improving Software Processes
Shruti Mittal1, Kamna Solanki2, Anuja Saroha3

1Student of M.tech, M.D University, UIET

Rohtak, Haryana, India
Shrutimittal25@gmail.com

2Assistant Professor in CSE Deptt., M.D University, UIET

Rohtak, Haryana, India
Kamna1604@yahoo.com

3Student of M.tech, M.D University, UIET

Rohtak, Haryana, India
Anuja.singh@yahoo.com

 Abstract
Every software after development needs to get tested. No software
can be built “Defect Free”. After testing defects are reported by the
use of a tool called “Defect Tracking System”. Also Defects
reported can be managed for enhancing the quality of software. This
paper present the view of how defects are managed and the approach
used for managing defect i.e. defect management process. Also it can
be used for process improvement which means to prevent future
occurrence of similar defects in processes.
Keywords: Defect, Defect Management Process, Defect Analysis,
Software Process Improvement with Defect Management.

I. INTRODUCTION

Defect (or Fault or bug) is a result of an entry of erroneous
information into software.[1] This could be due to an error in
the requirements, design and architecture specifications. If
these discrepancies are not identified during the review, then
these may get translated into the introduction of an error into
the application that needs to be identified during the testing
phase. These can come out as defects with different severity
(complexity) during testing.

A defect is a variance from specification. A defect is defined
as “any significant, unplanned event that occurs during
testing that requires subsequent investigation and/or
correction. Defects are raised when expected and actual test
results differ”. [3]

When a Defect is identified by a tester or user, its related
information (id, status and resolution, severity and priority
and summary etc.) is recorded in a Defect tracking system.
This information is called a Defect Report. Developer look at
the Defect Report generated by tester and try to resolve the
Defect.
Software systems may have hundreds of defects. Defect
tracking is the process of identifying defects in a product, (by
inspection, testing, or recording feedback from customers),

and evaluating these defects followed by prioritizing and
managing them.
 Using Defect tracking tool the following process is followed

• Logging in to the tool
• Defect Life Cycle
• Creating a defect
• Changing status of defects
• Generating metrics and reports

Raising a Defect: It is important that the tester verifies the
defect by attempting to reproduce the failure and by seeking a
second opinion and where possible obtain the initial
acceptance of the Defect Manager[4].

The Defect Management Approach includes counting and
managing defects. Defects are categorized on the basis of
severity, and the number of defects in each category [6]. This
count is used for planning the approach to be followed. Many
software development organizations use tools to arrive at the
defect leakage metrics (for counting the numbers of defects
that pass through development phases prior to detection) and
control charts to measure and improve development process
capability. Also these defect data can be used for software
process improvement (SPI)[8]. SPI is viewed as improving
the software processes for the intent of increasing the quality
of product [10].

II. SOFTWARE DEFECT

Whenever a software product is examined, different types of
defects or bugs get encountered in software. These includes
[2]:

• REQUIREMENTS DEFECT:
A mistake made in the definition or specification of the
customer needs for a software product. This includes

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

57

defects found in functional specifications; interface,
design, and test requirements; and specified standards.

• DESIGN DEFECT:

 A mistake made in the design of a software product [11].
This includes defects found in functional descriptions,
interfaces, control logic, data structures, error checking,
and standards.

• CODE DEFECT:

 A mistake made in the implementation or coding of a
program. This includes defects found in program logic,
interface handling, data definitions, computation, and
standards.

• DOCUMENT DEFECT:

 A mistake made in a software Product publication [17].
This does not include mistakes made to requirements,
design, or coding documents
.

• TEST CASE DEFECT:

A mistake in the test case causes the Software product to
give an unexpected result.

• OTHER WORK PRODUCT DEFECT:

 Defects found in software artifacts that are used to
 support the development or maintenance of a software
 product [17]. This includes test tools, compilers,
configuration libraries, and other computer-aided
software engineering tools.

III. DEFECT MANAGEMENT PROCESS

The defect management process include several steps When
these steps get implemented in an organization, these have
more detailed procedures with some specified standards and
policies[11]. Steps in defect management process vary from
organization to organization. Fig 1 shows general steps
include in management process are:

DEFECT
PREVENTION

DELIVERABLE
BASELINE

DEFECT
DISCOVERY

DEFECT
RESOLUTION

PROCESS
IMPROVEMENT

FIGURE 1

• DEFECT PREVENTION:
It is the process where different techniques, methodology &
standard get implemented for reduction of risk.

• DELIVERABLE BASELINE:
Milestones are established after which deliverables considered
to be completed and ready for further development work [7].
When deliverable is base lined, changes in it get controlled.
Errors in a deliverable are not considered defects until after
the deliverable is base lined.

• DEFECT DISCOVERY:
This step involves the identification of a defect. Hopefully,
the person discovering the defect is someone on the testing
team [13]. In the real world, it can be anyone including the
other individuals on the project team, or on rare occasions
even the end-customer.

• DEFECT RESOLUTION:
In this step, the developer fixes (resolves) the defect and
follows the organization's process to move the fix to the
environment where the defect was originally identified.

• PROCESS IMPROVEMENT:

In this step, the process in which a defect originated get
identified and analyzed to identify ways to improve the
process to prevent future occurrences of similar defects. Also
the validation process that should have identified the defect
earlier is analyzed to determine ways to strengthen that
process.

The effectiveness of defect management system is influenced
by the organizational culture it operates within[12]..If the
organization consider the defects as the part of the process
rather than taking it negatively seem to be able to deliver high
quality software.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

58

IV. SOFTWARE PROCESS IMPROVEMENT

WITH DEFECT MANAGEMENT:

Software process improvement (SPI) is viewed as improving
the software processes for the intent of increasing the quality
of the software products [1,15] . This can be done through
understanding the original software process and change it in
order to increase the quality of the software products [2].
Grady claims software defect data is the most valuable source
of information for software process improvement decisions .
Further, the defect data provides a way of comparing
improvements done against historic defect data in order to
measure the effect of the improvements. He argues how
ignoring defect data might yield dire consequences for
business performance of an organization through reduced
customer satisfaction and increased operational costs [18].

There are three ways organizations approach the handling of
defects according to Basili and Fredericks.

 FIG 2

• FIREFIGHTERS APPROACH :

The most basic approach is the firefighters who have no
established processes for defect management other than the
ones required to keep track of them[7]. However, firefighters
do not use the defect data to facilitate any change in the
software processes. They have defined processes for
collection and handling of defect data, but the defect data is
never used.

• REACTIVE APPROACH :

 The second strategy is to be reactive. Organization
employing a reactive strategy uses the collected defect data to
improve how they work.

• PROACTIVE APPROACH :

The third strategy is being proactive. An organization
employing a proactive strategy analyses defect data
continuously in order to prevent similar defects from
occurring in the future [10]. They share defect data across the
organization in order to elicit areas on where to improve.

One useful way to evaluate software defects is to transfer
process learning from individuals to organizations. It includes
brainstorming the root causes of the defects and incorporating
what we learn into training and process changes so that the
defects won't occur again [14]. There are five steps:

• Start shifting from reactive responses to defects
toward proactive responses.

• Do failure analysis.
• Do root cause analysis to help decide what changes

must be made.
• Apply what is learned to train people.
• Evolve failure analysis and root-cause analysis to

 An effective continuous process improvement
 Process

A. REACTIVE USE OF DEFECT DATA (A
COMMON STARTING POINT):

After initial analysis, everyone reacts to defects either by
fixing them or by ignoring them. This is often done with
fast response to issues and by following up with patches or
workarounds, when appropriate. There are some dangers that
could occur if reactive processes aren't complemented with
proactive steps to eliminate defect sources:

• People can get in the habit of emphasizing reactive
thinking. This, in turn, suggests that management
finds shipping defective products acceptable.

• Managers get in the habit of fixing defects late in
development or after release.

• People place blame too easily in highly reactive
environment.

B. FAILURE ANALYSIS (CHANGING YOUR
MENTAL FRAME OF REFERENCE):

“Failure analysis is the evaluation of defect patterns to learn
process or product weaknesses”[18].

The proactive use of defect data to eliminate the root causes
of software defects starts with a change in mental frame of
reference. The reactive frame generally focuses on single
defects and asks “How much do they hurt?” It also considers
how important it is to fix particular defects compared with
others and asks “When must they be fixed?” The proactive
frame asks, “What caused those defects in the first place?
Which ones cause the greatest resource drain? How can we
avoid them next time?

C. ROOT-CAUSE ANALYSIS PROCESSES:
“Root-cause analysis is a group reasoning process applied to
defect information to develop organizational understanding of
the causes of a particular class of defects” [2]

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

59

There are many possible ways to analyze root-cause data.
Three approaches used in organization are:

• One-shot root-cause analysis[18]
• Post-project root-cause analysis[18]
• Continuous process improvement cycle[18]

• ONE-SHOT ROOT-CAUSE ANALYSIS:

A good starting approach for organizations that have not
previously categorized their defect data by root causes is a
one-shot root-cause analysis [16]. This approach minimizes
the amount of organizational effort invested by using
someone from outside the organization to facilitate the
process.

• POST-PROJECT ROOT-CAUSE ANALYSIS:
• The major difference between this process and the

one-shot process is that organizations that start with
the one-shot process have not previously collected
causal data. Organizations that already collect
failure-analysis data and have an understanding of
their past defect patterns analyze their data and act
on their results more efficiently [4].

• CONTINUOUS PROCESS IMPROVEMENT

CYCLE:
Some organizations have felt that root-cause analysis is so
beneficial that they now use it to pursue continuous process
improvement [9]. It appears to be a natural evolution from
post-process root-cause analysis successes.

V. CONCLUSION
This paper gives a conceptual view of the defect management
and processes used in it. It is very useful to manage the
defects for improving the process of software development.
Defect management reduce the cost of development of
software product as previous reports get used to resolve the
defects .There are several difficulties involved in managing
the defect but simultaneously it also have many benefits
involved with it. Use of Defect management improves the
quality of software. The organization that implementing
defect management will have a good reputation from
customer. It is beneficial to integrate the defect management
with software development process as it help in removing the
defects with every phase of development.

REFRENCES
[1] Sommerville. I “Software Engineering 7th ed”, Addison –
Wesley publishing company, Boston, 2004
[2] Larman C, “Applying UML and Patterns”, Prentice Hall PTR,
October 30th 1997.
[3] Humpyrey WS, “A Displine for Software Engineering First
(Ed):” Addison- Wesley Publishing company, Reading, 1995

[4] Shew hart WA, Deming WE, “Statistical Method from point
of view of Quality Control ,” publisher Dover ,New York , 1986.
[5] Singh, Rough, Gordon: “Standardization of the Quality
Assurances 3rd (edition)”, Saddle River, NJ: Prentice, Hall Inc,
1998
 [6] Humphrey WS " Managing the Software Process”,
publishing company - Addison-Wesley, 1990
 [7] Humphrey, W, “Introduction to Personal Process
Improvement”, Addison- Wesley, MA, 1996
 [8] http://www.estylesoft.com/?id=317&pid=1
 [9] Paul et al, “The Capability Maturity Model”, publisher Addison-
Wesley, Reading, 1995
 [10] Pfleeger L, “Software Engineering Theory and Practice, (2ed)”,
Prentice Hall, Upper saddle River, 2001.
 [11] “Feher P. and Gabor A.” The role of knowledge management
supporters in software development companies” Software Process
Improvement and Practice,11(3):251–260, June 2006
.[12] Johnson C, “The Benefit of PDCA”, Quality
Progress Vol 35, pp 120-121, 2002.
 [13]Clements, Szy perski, “Component Software,”publishing
 Company Addison – Wesley, New York,200414] Cheeseman
J, Dauds, “UML Components”, publisher Addison, New York, 2004
 [15]Daniel,Galin, “Software Quality Assurance”, publishing
company, Addison- Wesley, new York,2003
 [16] Deutsch R, Williams R, “Software Quality Engineering : A
total Technical and Management Approach”, Printicel Hall
international London, 1998.
 [17] Grady R., “Practical Software Metrics for Project
Management and Process Improvement”, Prentice-Hall, Inc., 1992.
 [18] Blanchard D., “Rework Awareness Seminar:Root-Cause
Analysis,”March12,1992.

