
IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

64

GRID COMPUTING AND

CHECKPOINT APPROACH

Pankaj gupta
Vaish College of Engineering, M.D.U, Rohtak, India

Pankajgupta.vce@gmail.com

Abstract

Grid computing is a means of allocating the computational power of a
large number of computers to complex difficult computation or
problem. Grid computing is a distributed computing paradigm that
differs from traditional distributed computing in that it is aimed toward
large scale systems that even span organizational boundaries. In this
paper we investigate the different techniques of fault tolerance which
are used in many real time distributed systems. The main focus is on
types of fault occurring in the system, fault detection techniques and the
recovery techniques used. A fault can occur due to link failure, resource
failure or by any other reason is to be tolerated for working the system
smoothly and accurately. These faults can be detected and recovered by
many techniques used accordingly. An appropriate fault detector can
avoid loss due to system crash and reliable fault tolerance technique
can save from system failure. This paper provides how these methods
are applied to detect and tolerate faults from various Real Time
Distributed Systems. The advantages of utilizing the check pointing
functionality are obvious; however so far the Grid community has not
developed a widely accepted standard that would allow the Grid
environment to consciously utilize low level check pointing packages.
Therefore, such a standard named Grid Check pointing Architecture is
being designed. The fault tolerance mechanism used here sets the job
checkpoints based on the resource failure rate. If resource failure
occurs, the job is restarted from its last successful state using a
checkpoint file from another grid resource. A critical aspect for an
automatic recovery is the availability of checkpoint files. A strategy to
increase the availability of checkpoints is replication. Grid is a form
distributed computing mainly to virtualizes and utilize geographically
distributed idle resources. A grid is a distributed computational and
storage environment often composed of heterogeneous autonomously
managed subsystems. As a result varying resource availability becomes
common place, often resulting in loss and delay of executing jobs. To
ensure good performance fault tolerance should be taken into account.
Here we address the fault tolerance in terms of resource failure.
Commonly utilized techniques to achieve fault tolerance is periodic
check pointing, which periodically saves the jobs state. But an
inappropriate check pointing interval leads to delay in the job
execution, and reduces the throughput. Hence in the proposed work, the
strategy used to achieve fault tolerance is by dynamically adapting the
checkpoints based on current status and history of failure information
of the resource, which is maintained in the Information server. The Last
failure time and Mean failure time based algorithm dynamically
modifies the frequency of checkpoint interval, hence increases the
throughput by reducing the unnecessary checkpoint overhead. In case
of resource failure, the proposed Fault Index Based Rescheduling

(FIBR) algorithm reschedules the job from the failed resource to some
other available resource with the least Fault-index value and executes
the job from the last saved checkpoint. This ensures the job to be
executed within the deadline with increased throughput and helps in
making the grid environment trust worthy.
Keywords: Grid Computing, Fault Tolerance, Checkpoint,
Replication, Gridisim.

1. INTRODUCTION

Grid computing is a term referring to the combination of
computer resources from multiple administrative domains to
reach a common goal. The grid can be thought of as a
distributed system with non-interactive workloads that involve a
large number of files. What distinguishes grid computing from
conventional high performance computing systems such as
cluster computing is that grids tend to be more loosely coupled,
heterogeneous, and geographically dispersed. Although a grid
can be dedicated to a specialized application, it is more common
that a single grid will be used for a variety of different purposes.
Grids are often constructed with the aid of general-purpose grid
software libraries known as middleware. Grid computing has
emerged as the next-generation parallel and distributed
computing methodology that aggregates dispersed
heterogeneous resources for solving various kinds of large-scale
parallel applications in science, engineering and commerce. A
Grid enables sharing, selection, and aggregation of a wide
variety of geographically distributed resources including
supercomputers, storage systems, data sources and specialized
devices owned by different organizations. Management of these
resources is an important infrastructure in the grid computing
environment. It becomes complex as the resources are
geographically distributed, heterogeneous in nature, owned by
different individual or organizations with their own policies,
have different access models, and have dynamically varying
loads and availability. Grid computing or the use of a
computational grid, is applying the resources of many
computers in a network to a single problem at the same time -
usually to a scientific or technical problem that requires a great
number of computer processing cycles or access to large

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

65

amounts of data. Compared to other distributed environments,
such as clusters, complexity of grid mainly originates from
decentralized management and resource heterogeneity. These
characteristics often lead to strong variations in availability,
which in particular depends on resource and network failure
rates, administrative policies, and fluctuations in system load.
Apparently, runtime changes in system availability can
significantly affect job execution. Since for a large group of
time-critical or time consuming jobs delay and loss are not
acceptable, fault tolerance should be taken into account.
Providing fault tolerance in a distributed environment, while
optimizing resource utilization and job execution times, is a
challenging task. To accomplish it, we use dynamic adaptation
of checkpoints technique, based on current status of the job and
failure history of the resource, which overcomes the checkpoint
overhead that is caused by unnecessary checkpoints in case of
periodic check pointing And hence achieves fault tolerance with
increased throughput.

2. RELATED WORK

Fault tolerance is the ability of a system to perform its function
correctly even in the presence of faults. The fault tolerance
makes the system more dependable. A complementary but
separate approach to increase dependability is fault prevention.
This consists of techniques, such as inspection, whose intent is
to eliminate the circumstances by which faults arise. A failure
occurs when an actual running system deviates from this
specified behavior. The cause of a failure is called an error. An
error represents an invalid system state that does not comply the
system specification. The error itself is the result of a defect in
the system or fault. In other words, a fault is the root cause of a
failure. However, a fault may not necessarily result in an error;
nevertheless, the same fault may result in multiple errors.
Similarly, a single error may lead to multiple failures.
Fault tolerance is an important property in grid computing, since
the resources are geographically distributed. Moreover the
probability of failure is much greater than in traditional parallel
systems. Therefore fault tolerance has become a crucial area of
interest. A large number of research efforts have already been
devoted to fault tolerance. Various aspects that have been
explored include design and implementation of fault detection
services as well as the development of failure prediction and
recovery strategies. The latter are often implemented through
job check pointing in combination with migration and job
replication. Although both methods aim to improve system
performance in the presence of failure, their effectiveness
largely depends on tuning runtime parameters such as the check
pointing interval and the number of replicas. Determining

optimal values for these parameters is far from trivial, for it
requires good knowledge of the application and the distributed
system at hand. The work on Grid fault tolerance can be divided
into pro-active and post-active mechanisms. In pro-active
mechanisms, the failure consideration for the Grid is made
before the scheduling of a job, and dispatched with hopes that
the job does not fail. Whereas, Post-active mechanisms handles
the job failures after it has occurred. Of those that look into
these issues, many works are primarily post-active in nature and
deal with failures through Grid monitoring.

3. TYPES OF FAULT

There are different types of fault which can occur in Real-Time
Distributed System. These faults can be classified on several
factors such as:
Network fault: A Fault occur in a network due to network
partition, Packet Loss, Packet corruption, destination failure,
link failure, etc.
Physical faults: This Fault can occur in hardware like fault in
CPUs, Fault in memory, Fault in storage, etc.
Media faults: Fault occurs due to media head crashes.
Processor faults: fault occurs in processor due to operating
system crashes, etc.
Process faults: A fault which occurs due to shortage of resource,
software bugs, etc.
Service expiry fault: The service time of a resource may expire
while application is using it.
A fault can be categorized on the basis of computing resources
and time. A failure occurs during computation on system
resources can be classified as: omission failure, timing failure,
response failure, and crash failure.
Permanent: These failures occur by accidentally cutting a wire,
power breakdowns and so on. It is easy to reproduce these
failures. These failures can cause major disruptions and some
part of the system may not be functioning as desired.
Intermittent: These are the failures appears occasionally. Mostly
these failures are ignored while testing the system and only
appear when the system goes into operation. Therefore, it is hard
to predict the extent of damage these failures can bring to the
system.
Transient: These failures are caused by some inherent fault in
the system.
However, these failures are corrected by retrying roll back the
system to previous state such as restarting software or resending
a message. These failures are very common in computer
systems.

4. ISSUES

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

66

In any real time distributed system there are three main issues.
1. Feasibility- this means that a task running should be finished
on its deadline even though there is a fault in the system. Dead
line in real time system is the major issue because there is no
meaning of such a task which is not finishing before its
deadline. So the question is that which method is to be applied
by which the task can finish on deadline in the presence of fault.
2.Reliability- in real time distributed system reliability means
availability of end to end services and the ability to experience
failures or systematic attacks, without impacting customers or
operations.
3. Scalability–it is about the ability to handle growing amount of
work, and the capability of a system to increase total throughput
under an increased load when resources are added.

Grid computing operates on these technology principles.

1. Standardization-IT departments have enjoyed greater
interoperability and reduced their systems management
overhead by standardizing on operating systems, servers,
storage hardware, middleware components, and network
components. Standardizing also helps reduce operational
complexity in the data center by simplifying application
deployment, configuration and integration.

2. Virtualization-Virtualizing IT resources means that
applications are not tied to specific server, storage, or network
components and can use any virtualized IT resource.
Virtualization occurs through a sophisticated software layer that
hides the underlying complexity of IT resources and presents a
simplified, coherent interface used by applications and other IT
resources.

3. Automation-Because of the potentially large number of
components—both virtual and physical—grid computing
demands large-scale automation of IT operations. Each
component requires configuration management, on-demand
provisioning, top-down monitoring, and other management
tasks. A grid management solution must ensure that
infrastructure cost savings do not evaporate as a result of hiring
additional staff to manage the grid. IT administrators need a top-
down view from the end-user or application level so they can
effectively measure service levels and proactively resolve
problems. Combining these capabilities into a single, automated,
integrated solution for managing grids gives organizations a
maximum return on their grid investment.

5. PROBLEM FORMULATION

Grid jobs are executed by the computational grid as follows:

(i) Grid users submit their jobs to the grid scheduler by
specifying their QoS requirements, i.e., deadline in which users
want their jobs to be executed, the number of processors and
type of operating system.
(ii) Grid scheduler schedules user jobs on the best available
resource by optimizing time.
(iii) Result of the job is submitted to user upon successful
completion of the job.

Such a computational grid environment has two major draw
backs:
1. If a fault occurs at a grid resource, the job is rescheduled on
another resource which eventually results in failing to satisfy the
user’s QoS requirement i.e. deadline. The reason is simple. As
the job is re executed, it consumes more time.
2. In the computational based grid environments, there are
resources that fulfill the criterion of deadline constraint, but they
have a tendency toward faults. In such a scenario, the grid
scheduler goes ahead to select the same resource for the mere
reason that the grid resource promises to meet user’s
requirements of the grid jobs. This eventually results in
compromising the user’s QoS parameters in order to complete
the job.
In this paper, in order to address the first problem, a job check
pointing strategy is used to tolerate faults gracefully, as it is able
to restore the partially completed job from the last checkpoint.
In order to address the second problem, make the check pointing
strategy adaptive by maintaining a fault index. This fault index
is maintained by taking into consideration the fault occurrence
history information of the grid resource. In this way, the
checkpoint is introduced mostly when it is necessary. The
application can only be restarted from the last known state, if the
checkpoint is available. To increase the availability of
checkpoint CRS is used. Using CRS, the current application
state can be taken at any time. Simulation experiments reveal
that the proposed strategy is able to tolerate faults by taking
appropriate measures according to resource vulnerability toward
faults.

6. CHECKPOINT APPROACH

The economy base grid is a user centric, resource management
and job scheduling approach. It offers incentive and profits to
resource owners as award of contributing their resources. On the
other hand, it also provides user flexible environment to
maximize their goal within their budget by relaxing QoS like
deadline and budget. Fault tolerance in such environment is
critical to consider because it effects the profit of both the

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

67

parties, but it become more important because the possibility of
fault in grid environment is much higher than a traditional
distributed system due to lack of centralized environment,
predominant execution of long jobs, highly dynamic resource
availability, diverse geographical distribution of resources, and
heterogeneous nature of grid resources. Adaptive check-pointing
fault tolerance approach is used in this scenario to overcome
above mentioned drawbacks. In this approach, fault occurrence
information is maintained for every resource. When a fault
occurs, the fault occurrence information of that resource is
updated. This fault occurrence information is used during
decision making of allocating the resources to the job. This is
implemented as fault index. Fault index indicates the resource
vulnerability to fault i.e. higher the fault index, higher the failure
rate. The fault index of a resource is increased every time when
the resource fails to complete the assigned task within deadline
and budget. Similarly the fault index is decreased every time
when resource successfully completes the assigned job within
deadline and budget.

The check pointing is one of the most popular technique to
provide fault-tolerance on unreliable systems. It is a record of
the snapshot of the entire system state in order to restart the
application after the occurrence of some failure. The checkpoint
can be stored on temporary as well as stable storage. However,
the efficiency of the mechanism is strongly dependent on the
length of the check pointing interval. Frequent check pointing
may enhance the overhead, while lazy check pointing may lead
to loss of significant computation. Hence, the decision about the
size of the check pointing interval and the check pointing
technique is a complicated task and should be based upon the
knowledge about the application as well as the system.
Therefore, various types of check pointing optimization have
been considered by the researchers, e.g., (i) Full check pointing
or Incremental check pointing (ii) Unconditional periodic check
pointing or Optimal (Dynamic) check pointing (iii) Synchronous
(Coordinated) or asysnchronous (Uncoordinated) check-pointing
and (iv) Kernel, Application or User level check-pointing. It is
the process to saving from complete execution of a task. It
checks the acceptance test, if fail then go to previous checkpoint
instead of beginning. A check point may be system level,
application level, or mixed level depends on its characteristics.
Check-pointing is also categorized on the basis of In-transit or
orphan message. These are Uncoordinated Check-pointing,
Coordinated Check-pointing, and Communication-induced
Check-pointing. Check-pointing also can be classified is based
on who instruments the application that do the actual capturing
and re-establishing of the application execution state. These are
Manual code insertion, Pre-compiler check pointing, Post-
compiler check-pointing A check point may be local or global

on the basis of their scope. Check-point for separate process is
local checkpoint and a check-point applied for set of processes
is called global check-point. Check-pointing have some demerits
such as Check-pointing causes execution time overhead even if
there are no crashes. The cost of writing check-point data to
stable storage whenever a check-point is taken is called the
check-pointing cost.

7. PERFORMANCE EVALUATION

The system models of these approaches are design and tested in
GridSim Toolkit-4.0. The gridsim libraries are added to the
platform of Eclipse, which is an integrated development
environment (IDE) for java. The gridsim libraries are available
freely as java runtime environment (jre), and they are linked to
eclipse platform as external jre. Numbers of resources with
different characteristics like cost, cpu rating, are used to design
grid infrastructure for simulation purpose, as mention in World
Wide Grid (WWG testbed). Different numbers of Gridlets are
created to evaluate these approaches. Gridlet is define in term of
length (in Million Instruction), input file size (in byte), and
output file size. To simulate real world hetrogenous scenarios,
the size of gridlets are varied from 3,000 to 20,000 MI at
random and input file and output size are varied from 500 to 700
bytes at random.

In this experiment, 200 gridlets are submitted and available
budget varies from 5000 to 17000. Total number of gridlet
successfully completed is plotted in fig 1. To measure the
performance, gridlets are assigned to grid in which no fault
tolerance approach is used and to grid in which adaptive check-
point fault tolerance approach is used. In both the scenario, first
aim is to fulfill the budget parameter. In the scenario where no
fault tolerance approach is used, all resources which satisfy
budget parameter are treated equally and jobs are assign to any
one of them. In adaptive checkpoint approach the resource who
has minimum fault index is selected among the all the resources
which satisfy the budget parameter. Fault occurrence history of
resource in maintains at fault manager and updated every time
when a gridlet return. Thus, the number of gridlet completed in
adaptive check point base approach is better than the scenario
where no fault tolerance approach is used.

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

68

Fig1: Number of Gridlet Completed for different budget.

Numbers of failed jobs are also less in adaptive check-point
approach. The sum of success job and failed job is not equal to
total number of submitted jobs because there are some jobs for
which no resource can satisfy the budget parameter, these jobs
are consider as cancel jobs.

Fig2: Number of Gridlet Completed for different budget.

8. CONCLUSION

Fault tolerance forms an important problem in all distributed
environments. Here we address the problem of fault tolerance in
terms of resource failure. Thus the proposed work achieves fault
tolerance by dynamically adapting the checkpoint frequency,
based on history of failure information and job execution time,
which reduces checkpoint overhead, and increases the
throughput In this study, the problem of scheduling with fault
tolerance strategy is proposed. Proposed scheme maintains

history of the fault occurrence of resource in fault index
manager. Before scheduling a job to a resource, checkpoint
manager uses the resource fault occurrence history information
and depending on this information, it sets different intensity of
check pointing. The availability of checkpoint files is increased
through replication. The performance of the proposed strategy is
evaluated using GRIDSIM Toolkit . The experimental results
demonstrate that proposed strategy effectively schedule the grid
jobs in fault tolerant way in spite of highly dynamic nature of
grid.

9. FUTURE WORK

In the future, it is planned to explore the potential of these
scheduling strategies by embedding them into real world grid
computing environments. Also it is planned to improve the
checkpoint replication service by optimizing the recovery of
checkpoint replica i.e. getting the replica in faster manner.

REFERENCE

[1]. Chtepen, M.; Claeys, F.H.A.; Dhoedt, B.; De Turck, F.;
Demeester, P.; Vanrolleghem, P.A. Adaptive Task
CHECKPOINTING and Replication: Toward Efficient Fault-
Tolerant Grids Parallel and Distributed Systems, IEEE
Transactions on Volume 20, Issue 2, Feb. 2009 Page(s):180 –
190 Digital Object Identifier 10.1109/TPDS.2008.93
[2]. Daniel Nurmi, Rich Wolski, Chris Grzegorczyk, Graziano
Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagorodnov,
Eucalyptus: A Technical Report on an Elastic Utility Computing
architecture Linking Your Programs To Useful Systems.UCSB
computer science technical report number 2008-2010
[3] Favarim, F.; da Silva Fraga, J.; Lung Lau Cheuk; Correia,
M..GRIDTS: A New Approach for Fault- Tolerant Scheduling
in Grid Computing Network Computing and Applications, 2007.
NCA 2007. Sixth IEEE International Symposium on Volume
,Issue,12-14 July 2007 Page(s):187–194 Digital ObjectIdentifier
10.1109/NCA.2007.27
[4]. Fangpeng Dong and Selim G. Akl January 2006 Scheduling
Algorithms for Grid Computing:State of the Art and Open
Problems. Technical Report No. 2006-504 School of
Computing, Queen’s University Kingston, Ontario
[5] Foster,I.; Yong Zhao; Raicu,I.; Lu,S; Grid computing and
Grid computing 360-degree compared. Grid computing
environments workshop,2008.GCE’08 12-16 Nov.2008 pages:1-
10.
[6]Lars-Olof Burchard, C´esar A. F. De Rose, Hans Ulrich
Heiss, Barry Linnert and J¨org Schneider. VRM: A Failure-
Aware Grid Resource Management System. Proc. of the 17th

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

69

Intl: Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’05). IEEE. 2005
[7]Mohammad Tanvir Huda, Heinz W. Schmidt and Ian D.
Peake. An Agent Oriented Proactive Fault tolerant Framework
for Grid Computing. First International Conference on e-Science
and Grid Computing (e-Science’05).IEEE. 2005
[8]R. Medeiros, W. Cirne, F. Brasileiro and J. Sauve, .Faults in
Grids: Why are they so bad and What can be done abut it? in the
proceedings of the Fourth Intl: Workshop on Grid Computing
(GRID'03), 2003.
[9] Nazir, B.; Khan, T.Fault Tolerant Job Scheduling in
Computational Grid. Emerging Technologies, 2006. ICET
apos;06. International Conference on Volume , Issue, 13-14
Nov.2006 Page(s):708–713 Digital Object Identifier
10.1109/ICET.2006.335930
[10] D. Feitelson, Parallel Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload/, 2008
[11] Jang-uk In,Paul Avery, Richard Cavanaugh. SPHINIX:A
fault tolerant system for scheduling in dynamic
environments,proceedings of the 19th IEEE international
parallel and distributed processing symposim.
[12]www.gridsim.org
[13]gridsimulator.http://www.buyya.com/gridbus/gridsim/,relea
sed on Apr 08, 2009
[14] S. Agarwal, R. Garg, M. Gupta, and J. Moreira, “Adaptive
Incremental Checkpointing for Massively Parallel Systems,”
Proc.18th Ann. Int’l Conf. Supercomputing (SC ’04), Nov.
2004.
[15] A. Subbiah and D. Blough, “Distributed Diagnosis in
Dynamic Fault Environments,” Parallel and Distributed
Systems, vol. 15, no. 5,pp. 453-467, 2004.

