IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

64

GRID COMPUTING AND
CHECKPOINT APPROACH

Pankaj gupta
Vaish College of Engineering, M.D.U, Rohtak, India
Pankajgupta.vce@gmail.com

Abstract
Grid computing is a means of allocating the comgportal power of a
large number of computers to complex difficult cargiion or
problem. Grid computing is a distributed computipgradigm that
differs from traditional distributed computing ihat it is aimed toward
large scale systems that even span organizatianaidaries. In this
paper we investigate the different techniques oftfeolerance which
are used in many real time distributed systems. Mk focus is on

types of fault occurring in the system, fault dét@ttechniques and the

recovery techniques used. A fault can occur ddimkdailure, resource
failure or by any other reason is to be toleratedwforking the system

smoothly and accurately. These faults can be d=textd recovered by

many techniques used accordingly. An appropriatdt f@etector can
avoid loss due to system crash and reliable faldrance technique
can save from system failure. This paper provides these methods
are applied to detect and tolerate faults from owewi Real Time
Distributed Systems. The advantages of utilizing theck pointing
functionality are obvious; however so far the Gemmunity has not
developed a widely accepted standard that wouldwalthe Grid

environment to consciously utilize low level cheohinting packages.
Therefore, such a standard named Grid Check pgifichitecture is

being designedThe fault tolerance mechanism used here sets the
checkpoints based on the resource failure rateresburce failure
occurs, the job is restarted from its last succéssfate using a
checkpoint file from another grid resource. A cdfi aspect for an
automatic recovery is the availability of checkpdites. A strategy to
increase the availability of checkpoints is regima. Grid is a form

distributed computing mainly to virtualizes andliné geographically
distributed idle resources. A grid is a distributesmputational and
storage environment often composed of heterogenaotmomously
managed subsystems. As a result varying resousitabiity becomes
common place, often resulting in loss and delagxafcuting jobs. To
ensure good performance fault tolerance shouldakentinto account.
Here we address the fault tolerance in terms obums failure.

Commonly utilized techniques to achieve fault tatere is periodic
check pointing, which periodically saves the jolstes But an

inappropriate check pointing interval leads to dela the job

execution, and reduces the throughput. Hence iprthigosed work, the
strategy used to achieve fault tolerance is by dyeoally adapting the
checkpoints based on current status and histofgilfre information

of the resource, which is maintained in the Infaiioraserver. The Last
failure time and Mean failure time based algoritidynamically

modifies the frequency of checkpoint interval, henacreases the
throughput by reducing the unnecessary checkpaoiathead. In case
of resource failure, the proposed Fault Index Baestcheduling

(FIBR) algorithm reschedules the job from the filesource to some
other available resource with the least Fault-indalkie and executes
the job from the last saved checkpoint. This ersuhe job to be
executed within the deadline with increased thrpughand helps in
making the grid environment trust worthy.

Keywords: Grid Computing, Fault Tolerance, Checkpoint,

Replication, Gridisim.

1. INTRODUCTION

Grid computing is a term referring to the combioatiof
computer resources from multiple administrative dora to

reach a common goal. The grid can be thought ofaas

distributed system with non-interactive workloaklattinvolve a
large number of files. What distinguishes grid coiig from
conventional high performance computing systemsh sas
cluster computing is that grids tend to be moresédy coupled,
heterogeneous, and geographically dispersed. Adthau grid
can be dedicated to a specialized applicatios, itdére common
¥hat a single grid will be used for a variety offelient purposes.
Grids are often constructed with the aid of genprapose grid
software libraries known as middleware. Grid conmmuthas
emerged as the next-generation parallel and diséib
computing methodology that aggregates
heterogeneous resources for solving various kifdisrge-scale
parallel applications in science, engineering aachrmerce. A
Grid enables sharing, selection, and aggregatiora ofide
variety of geographically distributed resources ludig
supercomputers, storage systems, data sourcespasihlzed
devices owned by different organizations. Managdméthese
resources is an important infrastructure in thel gmputing
environment. It becomes complex as the resources
geographically distributed, heterogeneous in natavened by
different individual or organizations with their awpolicies,
have different access models, and have dynamicaltying
loads and availability. Grid computing or the usé @
computational grid, is applying the resources of nya
computers in a network to a single problem at tmestime -
usually to a scientific or technical problem thatjwires a great
number of computer processing cycles or accessatgel

1IJCSMS
www.ijcsms.com

dispersed

ar

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

amounts of data. Compared to other distributedrenwments,
such as clusters, complexity of grid mainly origesa from
decentralized management and resource heterogef¢igse
characteristics often lead to strong variationsairailability,
which in particular depends on resource and netwailkire
rates, administrative policies, and fluctuationssistem load.
Apparently, runtime changes in system availabilican
significantly affect job execution. Since for adargroup of
time-critical or time consuming jobs delay and Iem® not
acceptable, fault tolerance should be taken intcouwat.
Providing fault tolerance in a distributed envircamty while
optimizing resource utilization and job executiomds, is a
challenging task. To accomplish it, we use dynaatdaptation
of checkpoints technique, based on current stdttisegjob and
failure history of the resource, which overcomes ¢theckpoint
overhead that is caused by unnecessary checkpoimtzse of
periodic check pointing And hence achieves faudramce with
increased throughput.

2. RELATED WORK

Fault tolerance is the ability of a system to perfats function

correctly even in the presence of faults. The faalerance
makes the system more dependable. A complementary
separate approach to increase dependability i$ paelention.
This consists of techniques, such as inspectiomselintent is
to eliminate the circumstances by which faultseari& failure

occurs when an actual running system deviates ftoim

specified behavior. The cause of a failure is dalle error. An
error represents an invalid system state that doesomply the
system specification. The error itself is the resdila defect in
the system or fault. In other words, a fault is thet cause of a
failure. However, a fault may not necessarily regulan error;

nevertheless, the same fault may result in multipteors.

Similarly, a single error may lead to multiple tais.

Fault tolerance is an important property in grignpaiting, since
the resources are geographically distributed. Mageothe

probability of failure is much greater than in titexhal parallel

systems. Therefore fault tolerance has become @atrarea of
interest. A large number of research efforts hdveady been
devoted to fault tolerance. Various aspects thatehbeen
explored include design and implementation of faldtection
services as well as the development of failure iptieth and

recovery strategies. The latter are often impleetkrihrough
job check pointing in combination with migration darjob

replication. Although both methods aim to improwestem

performance in the presence of failure, their difecess
largely depends on tuning runtime parameters sadhecheck
pointing interval and the number of replicas. Deti@ing

65

optimal values for these parameters is far fromiatki for it

requires good knowledge of the application anddis¢ributed

system at hand. The work on Grid fault toleranae lwa divided
into pro-active and post-active mechanisms. In gutive

mechanisms, the failure consideration for the Gsdmade
before the scheduling of a job, and dispatched Withes that
the job does not fail. Whereas, Post-active meshanihandles
the job failures after it has occurred. Of thosat tlook into

these issues, many works are primarily post-adtiveature and
deal with failures through Grid monitoring.

3. TYPES OF FAULT

There are different types of fault which can ocicuReal-Time
Distributed System. These faults can be classifirdseveral
factors such as:

Network fault: A Fault occur in a network due to network
partition, Packet Loss, Packet corruption, destmafailure,
link failure, etc.

Physical faults: This Fault can occur in hardware like fault in
CPUs, Fault in memory, Fault in storage, etc.

Media faults: Fault occurs due to media head crashes.
Processor faults: fault occurs in processor due to operating
gystem crashes, etc.

Process faults: A fault which occurs due to shortage of resource,
software bugs, etc.

Service expiry fault: The service time of a resource may expire
while application is using it.

A fault can be categorized on the basis of compgutesources
and time. A failure occurs during computation onsteyn
resources can be classified as: omission failimgngj failure,
response failure, and crash failure.

Permanent: These failures occur by accidentally cutting aewi
power breakdowns and so on. It is easy to reprodbese
failures. These failures can cause major disruptiand some
part of the system may not be functioning as ddsire
Intermittent: These are the failures appears ocnafly. Mostly
these failures are ignored while testing the systerd only
appear when the system goes into operation. Thergfas hard

to predict the extent of damage these failureshrarg to the
system.

Transient: These failures are caused by some inhéaelt in
the system.

However, these failures are corrected by retryimly back the
system to previous state such as restarting sadtaaresending

a message. These failures are very common in camnput
systems.

4. ISSUES

1IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

In any real time distributed system there are thma@ issues.
1. Feasibility- this means that a task running #hde finished
on its deadline even though there is a fault ingygem. Dead
line in real time system is the major issue becdhbsee is no
meaning of such a task which is not finishing befats
deadline. So the question is that which methoa ibet applied
by which the task can finish on deadline in thespree of fault.
2.Reliability- in real time distributed system edility means
availability of end to end services and the abildyexperience
failures or systematic attacks, without impactingstomers or
operations.

3. Scalability—it is about the ability to handleoging amount of
work, and the capability of a system to increasal throughput
under an increased load when resources are added.

Grid computing operates on these technology priesip

66

Grid jobs are executed by the computational gritbbsws:

(i) Grid users submit their jobs to the grid schHeduby
specifying their QoS requirements, i.e., deadlimevhich users
want their jobs to be executed, the number of Eewe and
type of operating system.

(i) Grid scheduler schedules user jobs on the bestlable
resource by optimizing time.

(i) Result of the job is submitted to user uponceessful
completion of the job.

Such a computational grid environment has two maj@w

backs:

1. If a fault occurs at a grid resource, the jobeischeduled on
another resource which eventually results in fgilio satisfy the
user's QoS requirement i.e. deadline. The reasaimgple. As

the job is re executed, it consumes more time.

2. In the computational based grid environmentgrehare

1. Standardization-IT departments have enjoyed t@rearesources that fulfill the criterion of deadlinenstraint, but they

interoperability and reduced their
overhead by standardizing on operating systemsyessr
storage hardware,
components. Standardizing also helps reduce opgeiti
complexity in the data center by simplifying applion
deployment, configuration and integration.

2. Virtualization-Virtualizing IT resources meanshat
applications are not tied to specific server, gieraor network
components and can use any virtualized IT
Virtualization occurs through a sophisticated saf@vlayer that
hides the underlying complexity of IT resources anelsents a
simplified, coherent interface used by applicatiansl other IT
resources.

3. Automation-Because of the potentially large nemlof

systems managéméave a tendency toward faults. In such a scendnie,grid

scheduler goes ahead to select the same resourtieefonere

middleware components, and nletw@sason that the grid resource promises to meet 'suser

requirements of the grid jobs. This eventually Hhssun

compromising the user's QoS parameters in orderotoplete
the job.

In this paper, in order to address the first prohla job check
pointing strategy is used to tolerate faults gralkkgfas it is able
to restore the partially completed job from thet letseckpoint.

résour¢g.order to address the second problem, make tkekgbointing

strategy adaptive by maintaining a fault index.sTfault index
is maintained by taking into consideration the faxdcurrence
history information of the grid resource. In thisayy the
checkpoint is introduced mostly when it is necegsdrhe
application can only be restarted from the lastkmatate, if the
checkpoint is available. To increase the availbbiliof

components—both virtual and physical—grid computingheckpoim CRS is used. Using CRS, the currenticatioin

demands large-scale automation of
provisioning, top-down monitoring, and other maragat
tasks. A grid management solution must ensure

infrastructure cost savings do not evaporate asaltrof hiring
additional staff to manage the grid. IT adminigiratneed a top-
down view from the end-user or application leveltsey can
effectively measure service levels and proactivebgolve

problems. Combining these capabilities into a gingutomated,
integrated solution for managing grids gives orgations a
maximum return on their grid investment.

5. PROBLEM FORMULATION

; . . IT operationsch Edtate can be taken at any time. Simulation experisneeveal
component requires configuration management, onadem

that the proposed strategy is able to toleratetday taking
aé)propriate measures according to resource vuliiegyabward

blts.
6. CHECKPOINT APPROACH

The economy base grid is a user centric, resoudr@agement
and job scheduling approach. It offers incentive @nofits to
resource owners as award of contributing theirueses. On the
other hand, it also provides user flexible envirenm to
maximize their goal within their budget by relaxiq@psS like
deadline and budget. Fault tolerance in such enriemt is
critical to consider because it effects the prdit both the

1IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

parties, but it become more important because dissipility of
fault in grid environment is much higher than aditianal
distributed system due to lack of centralized esvinent,
predominant execution of long jobs, highly dynamésource
availability, diverse geographical distribution r&fsources, and
heterogeneous nature of grid resources. Adaptigekchointing
fault tolerance approach is used in this scenari@wercome
above mentioned drawbacks. In this approach, fazdtirrence
information is maintained for every resource. Wheerfault
occurs, the fault occurrence information of thasowgce is
updated. This fault occurrence information is usdating
decision making of allocating the resources tojtie This is
implemented as fault index. Fault index indicates tesource
vulnerability to fault i.e. higher the fault indelxigher the failure
rate. The fault index of a resource is increasestyetime when
the resource fails to complete the assigned tattkirwileadline
and budget. Similarly the fault index is decreasedry time
when resource successfully completes the assigmedvithin
deadline and budget.

The check pointing is one of the most popular tegpm to
provide fault-tolerance on unreliable systemssltirecord of
the snapshot of the entire system state in ordeestart the
application after the occurrence of some failutee Theckpoint
can be stored on temporary as well as stable stordgwever,
the efficiency of the mechanism is strongly depatdm the
length of the check pointing interval. Frequent a@heointing
may enhance the overhead, while lazy check pointiag lead
to loss of significant computation. Hence, the sieci about the
size of the check pointing interval and the chedaknying
technique is a complicated task and should be baped the
knowledge about the application as well as the esyst
Therefore, various types of check pointing optiricza have
been considered by the researchers, e.g., (i)chektk pointing
or Incremental check pointing (i) Unconditionalripelic check
pointing or Optimal (Dynamic) check pointing (iBynchronous
(Coordinated) or asysnchronous (Uncoordinated)cipeinting
and (iv) Kernel, Application or User level checkimpting. It is
the process to saving from complete execution dask. It
checks the acceptance test, if fail then go toiptsvcheckpoint
instead of beginning. A check point may be systawell
application level, or mixed level depends on itarelsteristics.
Check-pointing is also categorized on the basimdfansit or
orphan message. These are Uncoordinated Checkrapint
Coordinated Check-pointing, and Communication-iredlic
Check-pointing. Check-pointing also can be clasdifis based
on who instruments the application that do the aatapturing
and re-establishing of the application executi@iestThese are
Manual code insertion, Pre-compiler check pointifRpst-
compiler check-pointing A check point may be loocalglobal

67

on the basis of their scope. Check-point for sepgpeocess is
local checkpoint and a check-point applied for &feprocesses
is called global check-point. Check-pointing hasene demerits
such as Check-pointing causes execution time oadregen if
there are no crashes. The cost of writing checkitpdata to
stable storage whenever a check-point is takenalled the
check-pointing cost.

7. PERFORMANCE EVALUATION

The system models of these approaches are desigtested in
GridSim Toolkit-4.0. The gridsim libraries are addé the
platform of Eclipse, which is an integrated devehemt
environment (IDE) for java. The gridsim librarieseavailable
freely as java runtime environment (jre), and theg linked to
eclipse platform as external jre. Numbers of resesirwith
different characteristics like cost, cpu ratinge ased to design
grid infrastructure for simulation purpose, as r@ntn World
Wide Grid (WWG testbed). Different numbers of Geidl are
created to evaluate these approaches. Gridlefirsede term of
length (in Million Instruction), input file size i byte), and
output file size. To simulate real world hetrogem@eenarios,
the size of gridlets are varied from 3,000 to 20,0dl at
random and input file and output size are variedhf600 to 700
bytes at random.

In this experiment, 200 gridlets are submitted awailable
budget varies from 5000 to 17000. Total number ofllgt
successfully completed is plotted in fig 1. To measthe
performance, gridlets are assigned to grid in whch fault
tolerance approach is used and to grid in whiclpthda check-
point fault tolerance approach is used. In bothsttenario, first
aim is to fulfill the budget parameter. In the saeom where no
fault tolerance approach is used, all resourceschvisiatisfy
budget parameter are treated equally and jobsssigrato any
one of them. In adaptive checkpoint approach tseuee who
has minimum fault index is selected among thehalresources
which satisfy the budget parameter. Fault occuednistory of
resource in maintains at fault manager and updetedy time
when a gridlet return. Thus, the number of gridieipleted in
adaptive check point base approach is better tharst¢enario
where no fault tolerance approach is used.

1IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

200
150 - .
—o—with out
100 - fault
| tolerance
o QO Q Q9 Q 9 Q
0 0 0o Q QO Q Q
o O Q9 C O O QO
M~ O~ M o~
~ = o~

Figl: Number of Gridlet Completed for different lyed.

Numbers of failed jobs are also less in adaptiveckipoint
approach. The sum of success job and failed jolmtisequal to
total number of submitted jobs because there amegobs for
which no resource can satisfy the budget paramgtese jobs
are consider as cancel jobs.

200 -
150 - .
—e—with out
100 - fault
o tolerance
©C O 0 Q0 9O 9 QC
o 0 9 @ © © O
o O O O O 8 o
n o~ o oM ~
L B B I

Fig2: Number of Gridlet Completed for different lyed.

8. CONCLUSION

Fault tolerance forms an important problem in aitributed
environments. Here we address the problem of faldtance in
terms of resource failure. Thus the proposed wohiexes fault
tolerance by dynamically adapting the checkpoiegfiency,
based on history of failure information and job @x#on time,
which reduces checkpoint overhead, and increases
throughputin this study,
tolerance strategy is proposed. Proposed schemataims

68

history of the fault occurrence of resource in fairddex

manager. Before scheduling a job to a resourcegckgoint

manager uses the resource fault occurrence histtagmation

and depending on this information, it sets differeensity of

check pointing. The availability of checkpoint flés increased
through replication. The performance of the proposteategy is
evaluated using GRIDSIM Toolkit . The experimentasults

demonstrate that proposed strategy effectivelydudeethe grid
jobs in fault tolerant way in spite of highly dynemmature of
grid.

9. FUTURE WORK

In the future, it is planned to explore the potaintf these
scheduling strategies by embedding them into readdvgrid
computing environments. Also it is planned to imgrothe
checkpoint replication service by optimizing theaeery of
checkpoint replica i.e. getting the replica in éashanner.

REFERENCE

[1]. Chtepen, M.; Claeys, F.H.A.; Dhoedt, B.; Derdkj F.;
Demeester, P.; Vanrolleghem, P.A. Adaptive Task
CHECKPOINTING and Replication: Toward Efficient Hau
Tolerant Grids Parallel and Distributed Systems,ERE
Transactions on Volume 20, Issue 2, Feb. 2009 Bad80 —
190 Digital Object Identifier 10.1109/TPDS.2008.93

[2]. Daniel Nurmi, Rich Wolski, Chris Grzegorczytgraziano
Obertelli, Sunil Soman, Lamia Youseff, Dmitrii Zagdnov,
Eucalyptus: A Technical Report on an Elastic Utiltomputing
architecture Linking Your Programs To Useful SyssddCSB
computer science technical report number 2008-2010

[3] Favarim, F.; da Silva Fraga, J.; Lung Lau CheGhkrreia,
M..GRIDTS: A New Approach for Fault- Tolerant Schédg
in Grid Computing Network Computing and Applicatir2007.
NCA 2007. Sixth IEEE International Symposium on Mok
JIssue,12-14 July 2007 Page(s):187-194 Digital Qlgentifier
10.1109/NCA.2007.27

[4]. Fangpeng Dong and Selim G. Akl January 2006e8aling
Algorithms for Grid Computing:State of the Art ar@pen
Problems. Technical Report No. 2006-504 School
Computing, Queen’s University Kingston, Ontario

[5] Foster,l.; Yong Zhao; Raicu,l.; Lu,S; Grid contipg and
Grid computing 360-degree compared. Grid computing
environments workshop,2008.GCE’'08 12-16 Nov.200$epal -

10.

Rﬁ]Lars-OIof Burchard, C’esar A. F. De Rose, Hankicd

of

the problem of scheduling with faul[—|eiss, Barry Linnert and J'org Schneider. VRM: Aillie-

Aware Grid Resource Management System. Proc. ofl#bk

1IJCSMS
www.ijcsms.com

IJCSMS International Journal of Computer Science & Management Studies, Vol. 11, Issue 01, May 2011

ISSN (Online): 2231 —5268
Www.ijjcsms.com

Intl: Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD’'05). IEEE. 2005
[7IMohammad Tanvir Huda, Heinz W. Schmidt and lan D
Peake. An Agent Oriented Proactive Fault toleramainfework
for Grid Computing. First International Confereramee-Science
and Grid Computing (e-Science’05).IEEE. 2005

[8]R. Medeiros, W. Cirne, F. Brasileiro and J. Sauyaults in
Grids: Why are they so bad and What can be donkit&bin the
proceedings of the Fourth Intl: Workshop on Gridn@paiting
(GRID'03), 2003.

[9] Nazir, B.; Khan, T.Fault Tolerant Job Schedglinn
Computational Grid. Emerging Technologies, 2006 ETC
apos;06. International Conference on Volume , Issi®14
Nov.2006 Page(s):708-713 Digital Object Identifier
10.1109/ICET.2006.335930

[10] D. Feitelson, Parallel ~ Workloads Archive,
http://www.cs.huji.ac.il/labs/parallel/workload 0@8

[11] Jang-uk In,Paul Avery, Richard Cavanaugh. SWAMIA
fault tolerant system for scheduling in dynamic
environments,proceedings of the 19th IEEE inteoma
parallel and distributed processing symposim.
[12]www.gridsim.org
[13]gridsimulator.http://www.buyya.com/gridbus/gsich/,relea
sed on Apr 08, 2009

[14] S. Agarwal, R. Garg, M. Gupta, and J. Morefadaptive
Incremental Checkpointing for Massively Parallelst@&yns,”
Proc.18th Ann. Int'l Conf. Supercomputing (SC '0MNov.
2004.

[15] A. Subbiah and D. Blough, “Distributed Diagreosin
Dynamic Fault Environments,” Parallel and Distriodit
Systems, vol. 15, no. 5,pp. 453-467, 2004.

69

1IJCSMS
www.ijcsms.com

