
IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

138

Fundamental Research of Distributed Database

Swati Gupta1, Kuntal Saroha2, Bhawna 3

1Lecturer, RIMT, Chidana
 Swati.mangla.555@gmail.com

2Research Scholar , IIIT, Gwaliar,

sarohakuntal@gmail.com

3M.Tech. Scholar , PDMCE,Bahadurgarh
bhawna.kochhar9@gmail.com

 ABSTRACT
The purpose of this paper is to present an introduction to
Distributed Databases which are becoming very popular
now a days. Today’s business environment has an
increasing need for distributed database and Client/server
applications as the desire for reliable, scalable and
accessible information is Steadily rising. Distributed
database systems provide an improvement on
communication and data processing due to its data
distribution throughout different network sites. Not Only is
data access faster, but a single-point of failure is less likely
to occur, and it provides local control of data for users.

Keywords: Distributed databases fundamentals, current
research: query optimization, distribution optimization,
fragmentation optimization.

I INTRODUCTION

In today’s world of universal dependence on
information systems, all sorts of people need
access to companies’ databases. In addition to a
company’s own employees, these include the
company’s customers, potential customers,
suppliers, and vendors of all types. It is possible
for a company to have all of its databases
concentrated at one mainframe computer site
with worldwide access to this site provided by
telecommunications networks, including the
Internet. Although the management of such a
centralized system and its databases can be
controlled in a well-contained manner and this
can be advantageous, it poses some problems as
well. For example, if the single site goes down,
then everyone is blocked from accessing the
databases until the site comes back up again.
Also the communications costs from the many

far PCs and terminals to the central site can be
expensive. One solution to such problems, and
an alternative design to the centralized database
concept, is known as distributed database.
In short a distributed database is a collection of
databases that can be stored at Different
computer network sites. Each database may
involve different database management systems
and different architectures that distribute the
execution of transactions. The objective of a
distributed database management system
(DDBMS) is to control the management of a
distributed database (DDB) in such a way that it
appears to the user as a centralized database.

II DISTRIBUTED DATABASES

A distributed database management system
(DDBMS) is the software that manages the
DDB, and provides an access mechanism that
makes this distribution transparent to the user.
Distributed database system (DDBS) is the
integration of DDB and DDBMS. This
integration is achieved through the merging the
database and networking technologies together.
Or it can be described as, a system that runs on a
collection of machines that do not have shared
memory, yet looks to the user like a single
machine.

A distributed database (DDB) is a collection of
multiple, logically interrelated databases
distributed over a computer network. A
distributed database management system
(distributed DBMS) is the software system that
permits the management of the distributed

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

139

database and makes the distribution transparent
to the users [1]. The term distributed database
system (DDBS) is typically used to refer to the
combination of DDB and the distributed DBMS.
Distributed DBMSs are similar to distributed file
systems (see Distributed File Systems) in that
both facilitate access to distributed data.
However, there are important differences in
structure and functionality, and these
characterize a distributed database system:

1. Distributed file systems simply allow users to
access files that are located on machines other
than their own. These files have no explicit
structure (i.e., they are flat) and the relationships
among data in different files (if there are any)
are not managed by the system and are the users
responsibility. A DDB, on the other hand, is
organized according to a schema that defines
both the structure of the distributed data, and the
relationships among the data. The schema is
defined according to some data model, which is
usually relational or object-oriented (s e e
Distributed Database Schemas).

2. A distributed file system provides a simple
interface to users which allows them to open,
read/write (records or bytes), and close files. A
distributed DBMS system has the full
functionality of a DBMS. It provides high-level,
declarative query capability, transaction
management (both concurrency control and
recovery), and integrity enforcement. In this
regard, distributed DBMSs are different from
transaction processing systems as well, since the
latter provide only some of these functions.
3. A distributed DBMS provides transparent
access to data, while in a distributed file system
the user has to know (to some extent) the
location of the data. A DDB may be partitioned
(called fragmentation) and replicated in addition
to being distributed across multiple sites. All of
this is not visible to the users. In this sense, the
distributed database technology extends the
concept of data independence, which is a central
notion of database management, to
environments where data are distributed and
replicated over a number of machines connected
by a network. Thus, from a user s perspective, a

DDB is logically a single database even if
physically it is distributed.

III ARCHITECTURE CONCERN

A. The Hardware

Due to the extended functionality the DDBS
must be capable of, the DDBS design becomes
more complex and more sophisticated. At the
physical level the differences between
centralized and distributed systems are:

� Multiple computers called sites.
� These sites are connected via a

communication network, to enable the
data/query communications. Figure 1.
illustrates this architecture

Figure 1 Client Server Architecture

Networks can have several types of topologies
that define how nodes are physically and
logically connected. One of the popular
topologies used in DDBS, the client-server
architecture is described as follows: the
principle idea of this architecture is to define
specialized servers with specific functionalities
such as: printer server, mail server, file server,
etc. these serves then are connected to a
network of clients that can access the services
of these servers. Stations (servers or clients) can
have different design complexities starting from
Diskless client to combined server-client
machine. This is illustrated in Figure 1.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

140

The server-client architecture requires some kind
of function definition for servers and clients.
The DBMS functions are divided between
servers and clients using different approaches.
We present a common approach that is used
with relational DDBS, called centralized DMBS
at the server level.
The client refers to a data distribution dictionary
to know how to decompose the global query in
to multiple local queries. The interaction is done
as follows:

1. Client parses the user’s query and
decomposes it into independent site queries.

2. Client forwards each independent query to
the corresponding server by consulting with the
data distribution dictionary.

3. Each server process the local query, and
sends back the resulting relation to the client.

4. Client combines (manually by the user, or
automatically by client abstract) the received sub
queries, and do more processing if needed to get
to the final target result.

We would like to discuss the different
architectures of DDBS for the two main types,
the client/server, and the distributed databases:

The client/server:
the simplest tactic is known as the file server
approach. When a client computer on the LAN
needs to query, update, or otherwise use a file
on the server, the entire file must be sent from
the server to that client. All of the querying,
updating, or other processing is then performed
in the client computer. If changes were made to
the file, the entire file is then shipped back to
the server. Clearly, for files of even moderate
size, shipping entire files back and forth across
the LAN with any frequency will be very
costly. In terms of concurrency control,
obviously the entire file must be locked while
one of the clients is updating even one record in
it. Other than providing a basic file-sharing
capability, this arrangement’s drawbacks render
it not very practical or useful.

DBMS server approach:
A much better arrangement is variously known
as the database server or DBMS server
approach. Again, the database is located at the
server, but this time, the processing is split
between the client and the server, and there is
much less data traffic on the network. Say that
someone at a client computer wants to query the
database at the server. The query is entered at
the client, and the client computer performs the
initial keyboard and screen interaction
processing, as well as initial syntax checking of
the query. The system then ships the query over
the LAN to the server where the query is
actually run against the database. Only the
results are shipped back to the client. Certainly,
this is a much better arrangement than the file
server approach! The network data traffic is
reduced to a tolerable level, even for frequently
queried databases. Also, security and
concurrency control can be handled at the
server in a much more contained way. The only
real drawback to this approach is that the
company must invest in a sufficiently powerful
server to keep up with all of the activity
concentrated there.

Two-tier client/server:
 Another issue involving the data on a LAN is
the fact that some databases can be stored on a
client PC’s own hard drive while other
databases that the client might access are stored
on the LAN’s server. This is also known as a
two-tier approach, (Figure 2). Software has been
developed that makes the location of the data
transparent to the user at the client. In this mode
of operation, the user issues a query at the client,
and the software first checks to see if the
required data is on the PC’s own hard drive. If it
is, the data is retrieved from it, and that is the
end of the story. If it is not there, then the
software automatically looks for it on the server.

In an even more sophisticated three-tier
approach (Figure 3), if the software doesn’t
find the data on the client PC’s hard drive or on
the LAN server, it can leave the LAN through a
gateway computer and look for the data on, for

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

141

example, a large, mainframe computer that may
be reachable from many LANs.

Figure 2: Two-tier Client/Server

Figure 3: Three Tier Client/Server

Three-tier approach: In another use of the term
three-tier approach, the three tiers are the client
PCs, servers known as application servers, and
other servers known as database servers,
(Figure 4). In this arrangement, local screen and
keyboard interaction is still handled by the
clients, but they can now request a variety of
applications to be performed at and by the
application servers. The application servers, in
turn, rely on the database servers and their
databases to supply the data needed by the
applications. Though certainly well beyond the
scope of LANs, an example of this kind of
arrangement is the World Wide Web on the
Internet. The local processing on the clients is
limited to the data input and data display
capabilities of browsers such as Netscape’s
Communicator and Microsoft’s Internet
Explorer. The application servers are the
computers at company Web sites that conduct

the companies’ business with the “visitors”
working through their browsers. The company
application servers in turn rely on the
companies’ database servers to provide the
necessary data to complete the transactions. For
example, when a bank’s customer visits his
bank’s Web site, he can initiate lots of different
transactions, ranging from checking his account
balances to transferring money between
accounts to paying his credit card bills. The
bank’s Web application server handles all of
these transactions. It, in turn, sends requests to
the bank’s database server and databases to
retrieve the current account balances, add
money to one account while deducting money
from another in a funds transfer, and so forth.

Figure 4 : Another version of Three Tier

Distributed Database

1. No replication:
The first and simplest idea in distributing the
data would be to disperse the six tables among
the five sites. If particular tables are used at
some sites more frequently than at other sites, it
would make sense to locate the tables at the
sites at which they are most frequently used.
Benefits include: local autonomy (security,
concurrency, backup, recovery), efficient local
transaction. Problems include: if one site goes
down, then it is not accessible by the rest of the
system. Expensive joins. The security can be
argued, one single place, one database is more
secure than DDBS

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

142

Figure 5 : No replication Approach

2 Replication the entire DB at each site:
Benefits include, better availability. If more
than one site requires frequent access to a
particular table, the table can be replicated at
each of those sites, again minimizing
telecommunications. And copies of a table can
be located at sites that have tables with which it
may have to be joined. Problems include, less
security, concurrency and consistency. At the
extreme: all tables are replicated, very efficient
for availability and join, whereas it is the worst
alternative for concurrency, consistency, and
disk space Figure 6.

Figure 6 : Replication of all Tables

Selective replication: replicate all at the
headquarters (improves join, all joins at the
headquarters, and replicate each table only once
in the network, so you have 2 copies of each on
the entire network. Figure 7.

Figure 7 : Selective Replication

This last approach has some down sides, more
than two sites could use a table frequently (need
more replicas), bottleneck at the headquarter for
the join operations. To avoid these, we use the
heuristics:

� Place copies of tables at the sites that
use them most heavily in order to
minimize telecommunications costs.

� Ensure that there are at least two copies
of important or frequently used tables to
realize the gains in availability.

� Limit the number of copies of any one
table to control the security and
concurrency issues.
� Avoid any one site becoming a
bottleneck.

Figure 8. illustrates a DDBS using these
Heuristics

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

143

Figure 8: Replication by heuristics

IV SOFTWARE ASPECT

In a typical DDBS, three levels of software
modules are defined:

� The server software: responsible for b
local data management at site.

� The client software: responsible for
most of the distribution functions;
DDBMS catalog, processes all requests
that require more than one site. Other
functions for the client include:
consistency of replicated data,
atomicity of global transactions.

� The communications software: provides
the communication primitives, used by
the client/server to exchange data and
commands Figure 9.

Figure 9 : Client/ Server Software

Advantages of Client/Server architecture
include: More efficient division of labor,

horizontal and vertical scaling of resources,
better price/performance on client machines,
ability to use familiar tools on client machines,
client access to remote data (via standards), full
DBMS functionality provided to client
workstations, and overall better system
price/performance

Disadvantages of Client/Server architecture
include: server forms bottleneck, server forms
single point of failure, and database scaling is
difficult .

It is preferable for a DDMBS to have the
property of distribution transparency (Figure
10), where the user’s can issue a global queries
without knowing or worrying about the global
distribution in the DDBS.

Figure 10 : Layers of Transparency

V FRAGMENTATION & REPLICATION

In distributing and allocating the database in
the previous section, we assumed that the entire
relations are kept intact. However, in DDBS we
need to define the logical unit of DB
distribution and allocation. In some cases it
might be more efficient to split the tables into
smaller units (fragments) and allocate them in
different sites.

Fragmentation has three different types:

A. Horizontal Fragmentation

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

144

As appears in Figure 11. the table G has been
added to demonstrate the fragmentation
operation. An example on horizontal
fragmentation is the employee’s table (G). It
makes since for the company to split G into
different partitions based on the employees who
work on that site. This makes the management,
queries, and transactions convenient and
efficient. The Down side of this choice is that,
whenever a query involving all G records, it has
to request all partitions from all sites and do a
union on them. .

Figure 11 : Fragmentation among Tables

Figure 12 : Horizontal Fragmentation

B. Vertical Fragmentation

In vertical partitioning, the columns of a table
are divided up among several cities on the
network. Each such partition must include the
primary key attribute(s) of the table. This
arrangement can make sense when different
sites are responsible for processing different
functions involving an entity. For example, the
salary attributes of a personnel table might be
stored in one city while the skills attributes of
the table might be stored in another city. Both
partitions would include the employee number,
the primary key of the full table. A down side
of this option is that, a query involving the
entire table G (Figure 13) would have to request
all portions from all sites and do a join on them.

Figure 13 : Vertical Fragmentation

C. Hybrid Fragmentation

In this type of fragmentation scheme, the table
is divided into arbitrary blocks, based on the
needed requirements. Each fragment hen can be
allocated on to a specific site. This type of
fragmentation is the most complex one, which
needs more management. This is illustrated in
Figure 14

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

145

Figure 14 : Hybrid Fragmentation

.
VI QUERY PROCESSING

DDBS adds to the conventional centralized
DDBS some other types of processing
expenses, because of the additional design
(hardware & software) to handle the distribution.
These expenses present as the cost of data
transfer over the network. Data transferred
could be, intermediate files resulting from local
sites, or final results need to be sent back to the
original site that issued the query. Therefore,
database designers are concerned about query
optimization, which target minimizing the cost
of transferring data across the network.

One method to optimize query on DDBS is, the
simijoin, where a relation R1 can send the
entire join-column CR1 to the target relation
R2, then the site containing R2 would perform
the join on CR1, and project on the passed
attributes. The resulting tuples are then shipped
back to R! for further processing. This can
significantly enhance the query efficiency, since
the data transferred on the network is
minimized.

VII CONCURRENCY & RECOVERY

DDBS design of concurrency and recovery, has
to consider different aspects other than of those
of centralized DBS. These aspects include:

� Multiple copies of data: concurrency
has to maintain the data copies
consistent. Recovery on the other hand
has to make a copy consistent with
others whenever a site recovers from a
failure.

� Failure of communication links
� Failure of individual sites
� Distributed commit: during transaction

commit some sites may fail, so the two-
phase commit is used to solve this
problem.

� Deadlocks on multiple sites.

The following two sections describe two
suggestions to manage concurrency control .

A. Distinguished Copy of a Data Item

There are three variations to this method:
primary site technique, primary site with
backup site, and primary copy technique. These
techniques are described as follows:

a) Primary site
In this method, a single site is designated as the
coordinator site. All locks and unlocks for all
data units are controlled by this site. One
advantage is, easy to implement. However two
downsides of this method are: overloading of
the coordinator site, and this site forms a single
point failure for the entire DDBS.

b) Primary site with backup site
This technique addresses the second
disadvantage in the 1st technique (primary site)
by designating a backup site, that can take over
as the new coordinator in case of failure, in
which case, another backup site has to be
selected.

c) Primary copy technique
This method distribute the load to the sites that
have a designated primary copy of a data unit as
opposed to centralizing the entire data units in
one coordinator site. This way if a site goes
down, only transactions involving the primary
copies residing on that site will be effected.

B. Voting

This method does not designate any
distinguished copy or site to be the coordinator
as suggested in the 1st two methods described
above. When a site attempts to lock a data unit,
requests to all sites having the desired copy,
must be sent asking to lock this copy. If the
requesting transaction did was not granted the
lock by the majority voting from the sites, then
the transaction fails and sends cancellation to
all. Otherwise it keeps the lock and informs all
sites that it has been granted the lock.

IJCSMS International Journal of Computer Science and Management Studies, Vol. 11, Issue 02, Aug 2011
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

146

C. Recovery

The first step of dealing with the recovery
problem is to identify that there was a failure,
what type was it, and at which site did that
happen. Dealing with distributed recovery
requires aspects include: database logs, and
update protocols, transaction failure recovery
protocol, etc .

VIII CONCLUSION

Through this paper, we want to attract readers
towards the advantageous side of distributed
databases. We also mentioned the software
architecture being used for the distributed
database .We also described Fragmentation,
replication and recovery aspect also in order to
make readers completely aware about the topic
being described here. Besides having a fruitful
side of DDBs ,It also attracts researchers for
finding the new scope in it.

IX REFERENCES

[1] Patrick O’Neil, and Goetz Graefe. 1995. Multi-Table
Joins Through Bitmapped Join Indices. SIGMOD Record,
Vol. 24, No. 3, September 1995

[2] Ambrose Goicoechea. 2000. Requirements Blueprint
and Multiple Criteria For Distributed Database Design.
International Council on Systems Engineering (INCOSE)
2000.

[3] Yin-Fu Huang, and Jyh-Her Chen. 2001. Fragment
Allocation in Distributed Database Design. Journal of
Information Science and Engineering 17, 491-506
(2001).

[4] Cyrus Shahabi, Latifur Khan, and Dennis McLeod.
2000. A Probe-Based Technique to Optimize Join Queries
in Distributed Internet Databases. Knowledge and
Information Systems
(2000) 2: 373-385

[5] Charles P. Pfleeger and Shari Lawrence Pfleeger,
Security in Computing, Prentice Hall Professional
Technical Reference, Upper Saddle River, New Jersey,
2003.

[6] James F. Kurose and Keith W. Ross, Computer
Networking: A Top-Down Approach Featuring the
Internet, Pearson Education, Inc, New York, 2003.

