
IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

12

Comparison Comparison Comparison Comparison of of of of Software Quality Metrics Software Quality Metrics Software Quality Metrics Software Quality Metrics forforforfor

ObjectObjectObjectObject----Oriented Oriented Oriented Oriented SystemSystemSystemSystem

Amit Sharma1, Sanjay Kumar Dubey2

 1M.Tech-Scholar, Amity School of Engineering & Technology, Amity University
Noida, Uttar Pradesh, India

amit.krsharma123@gmail.com

2Assistant Professor, Amity School of Engineering & Technology, Amity University
Noida, Uttar Pradesh, India

skdubey1@amity.edu

Abstract
According to the IEEE standard glossary of software
engineering, Object-Oriented design is becoming more
important in software development environment and
software Metrics are essential in software engineering for
measuring the software complexity, estimating size, quality
and project efforts. There are various approaches through
which we can find the software cost estimation and
predicates on various kinds of deliverable items. The tools
are used for measuring the estimations are lines of codes,
function points, and object points. This paper highlight
mostly the classification of metrics like software quality
metrics and the object-oriented metrics or all the software
quality metrics like the HALSTEAD metrics, size merics,
quality metrics and all the object oriented metrics which are
proposed from 90’s like CK metrics, Moose Metrics,
QMOOD Metrics, GQM, MOOSE, EMOOSE and maintain
the comparison table through which we can easily analyze
the difference between all the object-oriented metrics.
Keywords: Object-Oriented, class, attributes.

1. Introduction

Object-Oriented design is more beneficial in
software development environment and object-
oriented design metrics is an essential feature to
measure software quality over the environment [1].
Object-oriented design is those design which
contained all the properties and quality of software
that is related to any large or small project [2]. It is a
degree through which a system object can hold a
particular attribute or characteristics. Object-oriented
is a classifying approach that is capable to classify
the problem in terms of object and it may provide
many paybacks on reliability, adaptability, reusability
and decomposition of problem into easily under stood
objects and providing some future modifications [3].
Software metrics makes it possible for software
engineer to measure and predict software necessary
resource for a project and project work product

relevant to the software development effort. Metrics
provide insight necessary to create and design model
through the test. It also provide a quantative way to
access the quality of internal attributes of the product,
thereby it enables the software engineer to access
quality before the product is build [4]. Metrics are the
crucial source of information through which a
software developer takes a decision for design good
software. Some metrics may be transformed to serve
their purpose for a new environment.
Software metrics are the tools of measurement. The
term metrics is frequently used to mean a set of
specific measurement taken for a particular item or
process. According to the IEEE standards glossary
they defined a metrics as an “a quantative measure of
degree to which a component, system, or a given
attributes” [55].
Software metrics are mostly or generally characterize
by the software engineering product (example design,
source code, and test case), software engineering
process (example analysis, design and coding) and
software engineering people (example the efficiency
of an individual tester or the productivity of an
individual designer) [56]. Some most of the software
quality metrics features are conclude by many
researchers because for a good design metrics the
software developer must possess the Object-Oriented
design. These quality metrics features contained:-
Compliance: it contains all the ability to cover all the
quality factors and all the design characteristics [25].
Orthogonality: It contains all the ability to represent
different aspects of the system under measurement
[57].
Formality: It contains all ability to get the same
value for same system for different peoples. [40].
Minimality: It contains all the ability to used the
minimum number of metrics.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

13

Implementability / usuability: It contains
implementation technology i.e. independent ability to
perform the task.
Accuracy: it contains all the quantative
measurements to measure the magnitude of errors
[58].
Validity: It refers to the degree through which it
accurately reflects or assumes the specific concept
that the researchers are used to measure.
Reliability: This is the portability of failure of free
software operations for specified periods.

2. Literature survey

Abreu et al. [37] provides a new classification
framework for the TAPROOT. This framework was
defined with the other two independent vectors these
are category and granularity. Six categories of
Object-Oriented metrics were defined are design
metrics, complexity metrics, size metrics, quality
metrics, productivity metrics and reuse metrics and
also proposed three
Levels of granularity are software, class and methods
but no empirical/theoretical base for the metrics was
provided.

M. Alshayeb et al. [13] have given two iterative
procedures for the pragmatic study of object oriented
metrics. They include the short-cycled agile process
and the long cycled framework evolution process. By
observing the results, it can be seen that the design
efforts and source lines of code added, changed, and
deleted were triumphantly predicted by object-
oriented metrics in short-cycled agile process where
as in the case long-cycled framework process the
same features were not successfully predicted by it.
This has shown that the design and implementation
changes during development iterations can be
predicted by object-oriented Metrics, but the same
cannot be the case with long-term development of an
established system. R.D.Neal et al. [20] also gives the
study for the validation of the object-oriented
software metrics and found that some of the proposed
metrics could not be considered as the valid measure
for the dimension then, they could be measured. He
defined a model based on measurement theory of the
validation through which they can proposed 10 new
metrics – Potential Methods Inherited (PMI),
Proportion of Methods Inherited by a Subclass
(PMIS), Density of Methodological Cohesiveness
(DMC), Messages and Arguments (MAA), Density
of Abstract Classes (DAC), Proportion of Overriding
Methods in a Subclass (POM), Unnecessary
Coupling through Global Usage (UCGU), Degree of
Coupling Between Class Objects (DCBO), Number

of Private Instance Methods (PrIM), and Strings of
Message Links (SML).

R. Harrison et al. [12]suggested a statistical model
which is obtained from the logistic regression for
identifying threshold values for the Chidamber and
Kemerer metrics. The process is authenticated
empirically on a large Open-Source System- the
Eclipse project. Their conclusion depending on the
experimental results is that the Chidamber and
Kemerer Metrics have threshold effects at different
risk levels. The usefulness of these thresholds on later
releases was authenticated with the aid of decision
trees. Another conclusion by L.H. Ethzkorn [23] is
that the chosen threshold values were more precise
than those were chosen depending on either intuitive
perspectives or on data distribution parameters.
object-oriented design metrics has also been assign
the high level design quality attributes for the object-
oriented software with the help of hierarchical model.
H. Lieu. et al. [33] have given perception that quality
of software also plays an important role in terms of
safety aspects and financial aspects. They bridged the
gap between quality measurement and design of these
metrics, with the help of measuring the excellence of
object-oriented designs during development and re-
development process of the software.

 M. Subramanyam et al. [34] proposed some
Metrics suites and concluded that for the developers,
designs metrics are very important to know the
design aspects of the software and to enhance the
quality of software. Rachel Harrison et al. [35]
discussed about the six properties of metrics for
object-oriented design (MOOD) Metrics and
measured the object-oriented features like
Inheritance, coupling, encapsulation, and
polymorphism. In the result they showed that the
metrics could be used to provide an overall
assessment of the system. A. Goldberg et al. [46]
have experimentally checked size estimation models
that are object-oriented. The pragmatic examination
of object-oriented Function Points has been extended
to a considerable amount with the aid of a bigger data
set and by comparing Object Oriented Function
Points with other predictors of LOC (Lines of Code)
in their work. Linear models where the independent
variable is either a conventional Object-Oriented
entity or an Object-Oriented Function Points-related
measure were built and assayed by using a cross
validation approach. C. Shyam et al. [14] suggests
some software metrics through which we can
calculating the quality of modularization of an object
oriented software. They aimed that it provide a set of
metrics for the large scale object oriented software

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

14

system with having some dependencies and also
provide some metrics for characterizing the quality
for modularization regarding the APIs of the one
side. On the another side, they provide some object-
oriented dependencies like inheritance, associates
relationship and base class designing. Y. Zhou et al.
[54] considered the fault severity using the machine
learning methods with their experimental exploration
of fault proneness which predict the capability of
object-oriented design metrics and all of these of the
predictions and the fault severity are also taken from
the domain NASA data sets. J. Xu. et al. [53] have
proposed an object-oriented metrics which describes
the fault estimation using empirical analysis and also
used the CK metrics to apprise the number of faults
in the particular program. This also includes some
neural and fuzzy technique. At last, the result showed
that we can get a dependable fault by using CBO,

RFC, WMC, SLOC. Here SLOc is more considerable
for the effect on the number of defects. C.
Neelamegan et al. [45] surveyed four object-oriented
metrics and mostly focused on the measurements that
are totally applied on the design and class
characteristics. Dr. B.R. Sastry et al. [42] trying to
implement the graphics user interaction with the aid
of software metrics and also tried to determine the
quantity and quality of object oriented software
development lifecycle.

3. REVIEW OF SOFTWARE QUALITY
METRICS
Some of the software quality metrics for the
development of the software development are-

A. Size related Metrics

METRICS

SOFTWARE
QUALITY
METRICS

OBJECT
ORIENTED
METRICS

FPM

SIZE
RELATED

QUALITY
METRICS

ECC

COMPLEXITY
METRICS

HALSTEAD
METRICS

BANG CC IF PV

PC

PV

CHEN

LOC DM RM

PI

MOOSE

GQM

MORRIS

QMOOD MOOD

L&K EMOOSE

LI SATY

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

15

B. Complexity Metrics

C. Halstead Metrics

D. Quality Metrics

A. Size related metrics: these are the metrics which
can help to quantify the software size. There are three
types of software metrics which are using to measure
the software size are:

a) Line of code (LOC): It is the oldest metrics
which is used to measure the module size
but the main issue was developed in line of
codes is “what to include in measurement”.

b) Function point Metrics: In which we was
measured line of code when the code is
available and hence cannot be used in early
stage. Albrecht proposed a measure of
software size that can be determined early in
development life cycle and names as a
function point. This was totally depends on
the user input, user output, inqueries and
intended the values to measure the value to
measure program size and thus effort
required for the development.

c) Bang: Dc. Marco defined bang as a function
metrics. It can be calculated from the certain
algorithm and data primitives available from
the set of formal specification for the
software and give the measures of total
functionality and delievered to the user.

B. Complexity Metrics: Mc. Cabe in 1976 describe
about the complexity that described the detailed
design metrics for finding the complexity of the
metrics, these may be described as:

a) Cyclomatic Complexity (CC):
T.J.Mc.Cabe in 1976 proposed that
complexity measurement may be known as
module logical complexity. The basic goal
of the metrics is to evaluate the testability
and maintainability of the software module,
this metrics can also be used as a indicator
of reliability in a software system. Mc .Cabe
describe as:
V (G) =e-n+2

Where,
V(G)=cyclomatic complexity of flow graph
G of method in which we interested
e=number of edges in G
n= number of nodes in G
One more way to calculate:
V(G)=P+1
Where, P=number of predicate nodes which
represent a Boolean statements in code.

b) Extended Cyclomatic complexity
(ECC):McCabe measures the program
complexity but fails to differentiate in the
complexity of cases involving single
condition in conditional statement than ,
Myers suggest the extended cyclomatic
complexity that may be defined as:
ECC=eV(G)=Pe+1

Where,

Pe=number of predicate nodes in flow graph
G weighted by number of compound
statements.

c) Information flow: Kafura and Henry
proposed the information flow with in a
program structure as a metrics for program
complexity. In which the metrics may be
find by counting the number of local
information flows input (fan-in) and flows
output (fan-out). The procedure may be
defined as:
C=[procedure length]*[(fan-in)*(fan-out)]2

C. Halstead Metrics: Halstead in1976 proposed the
software science theory, the main aim of this
software science theory is to find out the overall
software production effort. In which. It contains some
vocabulary (n), length(N), volume(V).

a) Program vocabulary (n): in programming
languages, programs can be visualized as the
set of tokens and these token may be known
as operators and operands, halstead define
vocublary (n) as:
n=n1+n2

where,

n1=number of unique operators in the
program

n2=number of unique operands in the
program

b) Program length (N): The program length N
may be known as the count of the total
number of operators and operands. That may
be represented as:
N=N1+N2

Where,

N1=number of operators in the program

N2=number of operands in the program

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

16

c) Program volume (V): It can be measured
as the storage volume required to present in
the program. That may be represented as:
V=NLog2n

E.Quality Metrics: In the quality metrics, there are
some of the few quality metrics-

a) Defect Metrics: There is no effective
procedure for counting the defects in the
program, number of design change, number
of intended errors and the error detected by
the code inspections and the number of
program test may be treated as an alternative
measures to the defects.

b) Reliability Metrics: internal product quality
is usually measured by the number of bugsin
the software or by how long the software
can run before the encountering in a crash.

c) Maintainability Index: Dr. paul W. Oman
defined a number of functions that predict
software maintainability. The
maintainability index may be measured as
follows-
MI=171-5.2*In(ave V)-0.23*ave V(g)-
16.2*In(ave LOC)

Where,

Ave V= average halstead volume per
module

Ave V(g)=average extended cyclomatic
complexity per module.

aveLOC=average line of code per module.

4. Review of Object-Oriented Metrics

Some object-oriented metrics for the object-oriented
software development. These metrics are-
A. Chen Metrics
B. Morris’s Metrics
C. Lorenz and Kidd Metrics
D. MOOSE Metrics
E. EMOOSE
F. MOOD Metrics
G. Goal Question Metrics
H. QMOOD Metrics
I. LI Metrics
J. SATC for object oriented metrics

A.Chen Metrics
Chen et al. [30] proposed software metrics, through
which it can define “What is the behavior of the

metrics in object-oriented design”. They may be
described all of the behaviors like:
(i) CCM (Class Coupling Metric),
(ii) OXM (Operating Complexity Metric),
(iii) OACM (Operating Argument Complexity

Metric),
(iv) ACM (Attribute Complexity Metric),
(v) OCM (Operating Coupling Metric),
(vi) CM (Cohesion Metric),
(vii) CHM (Class Hierarchy of Method) and
(viii) RM (Reuse Metric).

Metrics (i) and (iii) are very subjective in
nature, Metrics (iv) and metric (vii) mostly involve
the count of features; and metric (viii) is a Boolean (0
or 1) indicator metric. Therefore, all of the
terminologies in object oriented language, consider as
the basic components of the paradigm are objects,
classes, attributes, inheritance, method, and message
passing. They proposed all of that each object
oriented metrics concept implies a programming
behavior.

B. Morris Metrics
Morris et al. [27] proposed a metrics suite for the
object-oriented metrics systems and they define the
system in the form of the tree structure and the
following are the Morris’s complexity and cohesion
metrics. Morris defined the complexity of the object-
oriented system in the form of the depth of the tree.
Depth of the tree measures the number of the sub
nodes of the tree. The more the number of sub nodes
of tree the more complex the system. So, complexity
of an object is equal to the depth of tree or total
number of sub nodes.

C. Lorenz & Kidd Metrics
Lorenz & Kidd [19] proposed a set of metrics that
can be grouped in four categories are size,
inheritance, internal and external. Size oriented
metrics for object oriented class may be focused on
count of the metrics, operations and attributes of an
individual class and average value of object-oriented
software as a whole. Inheritance based metrics is
totally concentrated in which operations that are
reused through the class hierarchy. Metrics for the
class intervals are totally oriented towards the
cohesion, while the external metrics were used to
examine and reuse. It divide the class based metrics
into the broad categories like size, internal, external
inheritance and the main metrics which are focused
on the size and complexity are class size (CS),
Number of operations overridden by a subclass
(NOO), Number of operations added by a subclass
(NOA), Specialization index (SI), Average operation

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

17

size (OS), Operation complexity (OC), Average
number of parameters per operation (NP).

D. Metrics for Object-Oriented Software
Engineering (MOOSE) : Chidamber and Kemerer
(CK) et al. [11] proposed some metrics that have
generated a significant amount of interest and are
currently the most well known object-oriented suite
of measurements for Object-Oriented software. The
CK metrics suite consists of six metrics that assess
different characteristics of the object-oriented design
are-

(i)Weighted Methods per Class (WMC): This
measures the sum of complexity of the methods in a
class. A predictor of the time and effort required to
develop and maintain a class we can use the number
of methods and the complexity of each method. A
large number of methods in a class may have a
potentially larger impact on the children of a class
since the methods in the parent will be inherited by
the child. Also, the complexity of the class may be
calculated by the cyclomatic complexity of the
methods. The high value of WMC indicates that the
class is more complex as compare to the low values.

(ii)Depth of Inheritance Tree (DIT): DIT metric is
used to find the length of the maximum path from the
root node to the end node of the tree. The following
figure shows that the value of the DIT from a simple
hierarchy. DIT represents the complexity and the
behavior of a class, and the complexity of design of a
class and potential reuse. Thus it can be hard to
understand a system with many inheritance layers.
On the other hand, a large DIT value indicates that
many methods might be reused. A deeper class
hierarchy indicates that the more methods was used
or inherited through which this making more
complex to predict the behavior of the class and the
deeper tree indicates that there is high complexity in
the design because all of the facts contained more
methods and class are involved. A deep hierarchy of
the class may indicates a possibility of the reusing an
inherited methods.

(iii)Number of children (NOC): According to
Chidamber and Kemerer, the Number of Children
(NOC) metric may be defined for the immediate sub
class coordinated by the class in the form of class
hierarchy[14,15]. These points are come out as NOC
is used to measure that “How many subclasses are
going to inherit the methods of the parent class”. The
greater the number of children, the greater the
potential for reuse, since inheritance is a form of
reuse. The greater the number of children, the greater
the likelihood of improper abstraction of the parent

class. The number of children also gave an idea of the
potential influence for the class which may be design.

(iv)Coupling between Objects (CBO): CBO is used
to count the number of the class to which the specific
class is coupled. The rich coupling decrease the
modularity of the class making it less attractive for
reusing the class and more high coupled class is more
sensitive to change in other part of the design through
which the maintenance is so much difficult in the
coupling of classes. The coupling Between Object
Classes (CBO) metric is defined as “CBO for a class
is a count of the number of non-inheritance related
couples with classes”. It claimed that the unit of
“class” used in this metric is difficult to justify, and
suggested different forms of class coupling:
inheritance, abstract data type and message passing
which are available in object-oriented programming.

(v)Response for class (RFC): The response set of a
class (RFC) is defined as set of methods that can be
executed in response and messages received a
message by the object of that class. Larger value also
complicated the testing and debugging of the object
through which, it requires the tester to have more
knowledge of the functionality. The larger RFC value
takes more complex is class is a worst case scenario-
value for RFC also helps the estimating the time
needed for time needed for testing the class.

(vi)Lack of Cohesion in Methods (LCOM): This
metric is used to count the number of disjoints
methods pairs minus the number of similar method
pairs used. The disjoint methods have no common
instance variables in the methods, while the similar
methods have at least one common instance variable.
It is used to measuring the pairs of methods within a
class using the same instance variable. Since
cohesiveness within a class increases encapsulation it
is desirable and due to lack of cohesion may imply
that the class is split in to more than two or more sub
classes. Low cohesion in methods increase the
complexity, when it increases the error proneness
during the development is so increasing.

E. Extended Metrics For Object-Oriented
Software Engineering EMOOSE :
W.Li et al. [9] proposed this metrics of the MOOSE
model. They may be described as-

(i)Message Pass Coupling (MPC): It means that the
number of message that can be sent by the class
operations.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

18

(ii)Data Abstraction Coupling (DAC): It is used to
count the number of classes which an aggregated to
current class and also defined the data abstraction
coupling.

(iii)Number of Methods (NOM): It is used to count
the number of operations that are local to the class
i.e. only those class operation which can give the
number of methods to measure it.

(iv)Size1:- It is used to find the number of line of
code.

(v)Size2:-It is used to count the number of local
attributes & the number of operation defined in the
class.

F. Metrics For Object-Oriented Design (MOOD):
F.B. Abreu et al. [37] defined MOOD (Metrics for
Object-Oriented Design) metrics. MOOD refers a
structural model of the object oriented paradigm like
encapsulation as (MHF, AHF), inheritance (MIF,
AIF), polymorphism (POF), and message passing
(COF). Each of the metrics was expressed to measure
where the numerator defines the actual use of any one
of the feature for a particular design [38]. In MOOD
metrics model, there are two main features are
methods and attributes. Attributes are used to
represent the status of object in the system and
methods are used to maintained or modifying several
kinds of status of the objects [5].
Metrics are defined as:

 (i)Method Hiding Factor (MHF): MHF is defined
as the ratio of the sum of the invisibilities of all
methods defined in all classes to the total number of
methods defined in the system under consideration.
The invisibility of a method is the percentage of the
total classes from which this method is not visible.

(ii)Attribute Hiding Factor (AHF): AHF is defined
as the ratio of the sum of the invisibilities of all
attributes defined in all classes to the total number of
attributes defined in the system under consideration.

(iii)Method Inheritance Factor (MIF): MIF is
defined as the ratio of the sum of the inherited
methods in all classes of the system under
consideration to the total number of available
methods (locally defined plus inherited) for all
classes.

(iv)Attribute Inheritance Factor (AIF): AIF is
defined as the ratio of the sum of inherited attributes
in all classes of the system under consideration to the

total number of available attributes (locally defined
plus inherited) for all classes.

(v)Polymorphism Factor (PF): PF is defined as the
ratio of the actual number of possible different
polymorphic situation .

MIF & AIF are used to measure the inheritance of the
class & also provide the similarity into the classes.
CF is used to measure the coupling between the
classes. the coupling are of two types static &
dynamic coupling, due to which is increase the
complexity of the class & reduce the encapsulation &
potential reuse that provide better maintainability.
Software developers for the object-oriented system
always avoid the high coupling factor. Polymorphism
potential of the class are used to measure the
polymorphism in the particular class & also arise
from inheritance

G. Goal Question Metrics (GQM):V. L. Basili [18]
developed GQM approach. This approach was
originally defined for evaluating defects for a set of
projects in the NASA Goddard Space Flight Center
environment. He has also provided the set of
sequence which are helpful for the designers. The
goal of GQM is to express the meaning of the
templates which covers purpose, perspective and
environment; a set of guidelines also proposed for
driving question and metrics. It provides a framework
involving three steps:
(i) List major goals of the development or
maintenance project.
(ii) Derive from each goal the questions that must be
answered to determine if the goals are being met.
(ii) Decide what must be measured in order to be able
to answer the questions adequately.

Goal (Conceptual level): A goal is defined for an
object, for a variety of reasons, with respect to
various models of quality, from various points of
view, relative to a particular environment. Objects of
measurement are products, processes and resources.
Question (Operational level): A set of questions is
used to characterize the way the
assessment/achievement of a specific goal is going to
be performed based on some characterizing model.
Metric (Quantitative level): A set of data is
associated with every question in order to answer it in
a quantitative way. This data can be objectives and
subjective, if they depend only on the objects that can
be measured and not on the viewport from which
they may be taken. For example, number of versions
of a document, staff hours spent on a task, size of a
program.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

19

The GQM approach define some goals, refine those
goals into a set of questions, and the questions are
further refined into metrics. Consider the following
figure, for a particular question; G1 and G2 are two
goals, Q2 in common for both of these goals. Metric
M2 is required by all three questions. The main idea
of GQM is that each metric identified is placed
within a context, so metric M1 is collected in order to
answer question Q1 to help achieve the goal G1.

Fig-2
Goal Question Metrics Hierarchy

H. Quality Model for Object-Oriented Design
(QMOOD):
The QMOOD [25] is a comprehensive quality model
that establishes a clearly defined and empirically
validated model to assess object-oriented design
quality attributes such as understandability and
reusability, and relates it through mathematical
formulas, with structural object-oriented design
properties such as encapsulation and coupling. The
QMOOD model consists of six equations that
establish relationship between six object-oriented
design quality attributes (reusability, flexibility,
understandability, functionality, extendibility, and
effectiveness) and eleven design properties.

 Fig-3
QMOOD Metrics [25]

The whole description for QMOOD can be get from
the Bansiya’s thesis through which, The QMOOD
metrics can further classified into two measures are:

System Measures: System measures describe such
metrics are DSC (Design Size in Metrics), NOH
(Number of Hierarchies), NIC (Number of
Independent classes), NSI (Number of Single
Inheritance), NMI (Number of multiple Inheritance),
NNC (Number of Internal Classes), NAC (Number of
Abstract Classes), NLC (Number of Leaf Classes),
ADI (Average Depth of Inheritance), AWI (Average
Width of Classes), ANA (Average Number of
Ancestors).

Class Measures: Class measure metrics are those
metrics which can define some metrics are MFM
(Measure of Functional Modularity), MFA (Measure
of Functional Abstraction), MAA (Measure of
Attribute Abstraction), MAT (Measure of
Abstraction), MOA (Measure of Aggregation), MOS

GI

G2

Q1

Q2 Q3

MI M2 M3 M4

Class

Number of attributes

 Number of methods

It show the number of
super class in terms of
ration of sub class

Number of
attributes per
class

If shows number of
classes in terms of ratio
of super class

It calculates the average
of depth of inheritance
for the class in the system

Number of public
methods in a class

Number of attributes
defined in a class in
terms of ratio of private
and protected attributes

Reuse

Coupling

Inheritance

Informatio
n Hiding

Number of
modules

Reuse Ration

Specification
ratio

Avg. No. of
Ancestors
 Ancestors

Class Interface
Size

Data Access
Metrics

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

20

(Measure of Association), MRM (Modeled
Relationship Measure), DAM (Data Access Metrics),
OAM (Operation Access Metrics), MAM (Member
Access Metrics), DOI (Depth of Inheritance), NOC
(Number of Children), NOA (Number of Ancestor),
NOM (Number of Methods), CIS (Class Interface
Size), NOI (Number of Inline Method), NOP
(Number of Polymorphic Method), NOO (Number of
Overloaded Operators), NPT (Number of Unique
Parameter Types), NPM (Number of Parameter per
Method), NOA (Number of Attributes), NAD
(Number of Abstract Data Types), NRA (Number of
Reference Attributes), NPA (Number of Public
Attributes), CSB (Class Size in Bytes), CSM (Class
Size in Metrics), CAM (Cohesion Among Methods
of class), DCC (Direct Class Coupling), MCC
(Maximum Class Coupling), DAC (Direct Attribute
based Coupling), MAC (Maximum Attribute based
Coupling), DPC (Directed Parameter based
Coupling), MPC (Maximum Parameter based
Coupling), VOM (Virtual ability Of Method), CEC
(Class Entropy Complexity), CCN (Class Complexity
based on Data), CCP (Class Complexity based on
method Parameter), CCM (Class Complexity based
on Members).

I. LI W. METRICS
Li et al. [16] proposed six metrics are Number of
Ancestor Classes (NAC), Number of Local Methods
(NLM), Class Method Complexity (CMC), Number
of Descendent Classes (NDC), Coupling Through
Abstract data type (CTA), and Coupling through
Message Passing (CTM).

(i)Number of Ancestor Classes (NAC): The
Number of Ancestor classes (NAC) metric proposed
as an alternative to the DIT metric measures the total
number of ancestor classes from which a class
inherits in the class inheritance hierarchy. The
theoretical basis and viewpoints both are same as the
DIT metric. In this the unit for the NAC metric is
“class”, justified that because the attribute that the
NAC metric captures is the number of other classes’
environments from which the class inherits.

(ii)Number of Local Methods (NLM): The
Number of Local Methods metric (NLM) is defined
as the number of the local methods defined in a class
which are accessible outside the class. It measures the
attributes of a class that WMC metric intends to
capture. The theoretical basis and viewpoints are
different from the WMC metric. The theoretical basis
describes the attribute of a class that the NLM metric
captures. This attribute is for the usage of the class in
an object-oriented design because it indicates the size

of a class’s local interface through which other
classes can use the class. They stated three
viewpoints for NLM metric as following:
1) The NLM metric is directly linked to a
programmer’s effort when a class is reused in an
Object-Oriented design. More the local methods in a
class, the more effort is required to comprehend the
class behavior.
2) The larger the local interface of a class, the more
effort is needed to design, implement, test, and
maintain the class.
3) The larger the local interface of a class, the more
influence the class has on its descendent classes.

(iii)Class Method Complexity (CMC): The Class
Method Complexity metric is defined as the
summation of the internal structural complexity of all
local methods. The CMC metric’s theoretical basis
and viewpoints are significantly different from WMC
metric. The NLM and CMC metrics are
fundamentally different as they capture two
independent attributes of a class. These two metrics
affect the effort required to design, implement, test
and maintain a class.

(iv)Number of Descendent Classes (NDC): The
Number of Descendent Classes (NDC) metric as an
alternative to NOC is defined as the total number of
descendent classes (subclass) of a class. The stated
theoretical basis and viewpoints indicate that NOC
metric measures the scope of influence of the class on
its sub classes because of inheritance. Li claimed that
the NDC metric captures the classes attribute better
than NOC.

(v)Coupling through Abstract Data Type (CTA):
The Coupling through Abstract Data Type (CTA) is
defined as the total number of classes that are used as
abstract data types in the data-attribute declaration of
a class. Two classes are coupled when one class uses
the other class as an abstract data type [16]. The
theoretical view was that the CTA metric relates to
the notion of class coupling through the use of
abstract data types. This metric gives the scope of
how many other classes’ services a class needs in
order to provide its own service to others.

(vi)Coupling through Message Passing (CTM):
The Coupling through Message Passing (CTM)
defined as the number of different messages sent out
from a class to other classes excluding the messages
sent to the objects created as local objects in the local
methods of the class. Two classes can be coupled
because one class sends a message to an object of
another class, without involving the two classes

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

21

through inheritance or abstract data type [Li., 98].
Theoretical view given was that the CTM metric
relates to the notion of message passing in object-
oriented programming. The metric gives an
indication of how many methods of other classes are
needed to fulfill the class’ own functionality.

J.SATC’s Metrics
Rosenberg Linda [48] proposed to select object
oriented metrics that supports the goal of measuring
the code, quality, result and they proposed many
object-oriented metrics due to lack of theoretical
basis and that can be validated. These metrics may be
used to evaluate the object oriented concepts like
methods, coupling and inheritance and mostly focus
on both of the internal and external efficiency
measures of the psychological complexity factors that
affect the ability of the programmer. It proposed three
traditional metrics and six new metrics for the object-
oriented system metrics-

Traditional Metrics

(i)Cyclomatic Complexity (CC): Cyclomatic
Complexity is used to measure the complexity of an
algorithm in a method of class. Cyclomatic
Complexity of methods can be combined with other
methods to measure the complexity of the class.
Generally, this is only used for the evaluation of
quality attribute complexity.

(ii)Line of Code: It is a method used to evaluate the
ease of understandability of the code by the
developer and the maintainer. It can easily be counted
by the counting the number of lines for the code and
so on. Generally, used to measure the reusability and
maintainability.

New Object Oriented Metrics
The six new object oriented metrics are may be
discussed as:

(i)Weight Method per Class (WMC): It is used to
count the methods implemented within a class. The
number of methods and complexities involved as
predictors, how many time and effort is required to
develop and maintain the class.

(ii)Response for a Class (RFC): It is used to the
combination of the complexity of a class through the
number of methods and the communication of
methods with other classes. This is used to evaluate
the understandability and testability.
(iii)Lack of Cohesion of Method (LCOM):
Cohesion is a degree of methods through which all

the methods of the class are inter-related with one
another and provide a well bounded behavior. It also
measures the degree of similarity of methods by data
inputs variables and attributes. Generally, ii is used to
evaluate the efficiency and reusability.

(iv)Depth of Inheritance Tree (DIT): Inheritance is
a relationship between the class that enables the
programmer to use previously defined object
including the operators and variables. It also helps to
find out the inheritance depth of the tree from current
node to the ancestor node. It is used to evaluate the
reusability, efficiency, understandability and
testability.

(v)Number of Children (NOC): This is used to
measure the subclass subordinate to a class in the
hierarchy. Greater the number of children means
greater reusability and inheritance i.e. in the form of
reuse. Generally, it is used to measure efficiency,
testability and reusability.
SATC focused on some selected criteria for the
object oriented metrics as:
(i) Efficiency of constructor design to decrease
architecture complexity.
(ii) Specification of design and enhancement in
testing structure
(iii) Increase capacity of psychological complexity.

Source
Construct

Metrics Object-Oriented
Structure

Traditional
metrics

Cyclomatic
complexity (CC)

Methods

 Line of Codes Methods

 Comment
percentage (COM)

Methods

New object
oriented metrics

Weight method per
class (WMC)

Methods / Class

 Response for a
class (RFC)

Class / Message

 Lack of cohesion of
methods (LCOM)

Class / Cohesion

 Coupling between
Object (CBO)

Coupling

 Depth of
Inheritance Tree
(DIT)

Inheritance

 Number of children
(NOC)

Inheritance

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

22

5. Conclusion and future Works

This manuscript contributes to an increased
understanding of the state of the software metrics.
This can also provide some software quality metrics
and the object-oriented metrics, which can define that
“how to measure the functionality of the software and
How we can improve their characteristics. A
mechanism is provided for comparing all the object
oriented software metrics which define all the
methods, attributes are used in software engineering
environment. The increase is software development
means the measurement was also so high. The
increasing significance being placed software
measurement which has to lead and increase amount
of research on developing the new software
measures. In this paper, we have presented all of the
software metrics for object oriented development.
They provided a basis for measuring all of the
characteristics like size, complexity, performance and
quality. In rely of some notions the quality may be
increased by added some features like abstraction,
polymorphism and inheritance which are inherent in
object orientation. This paper provides some help for
researchers and practitioners for better understanding
and selection of software metrics for their purposes.

References
[1] C. Neelamegam, M. Punithavali, “A survey on

object oriented quality metrics”, Global journal of
computer science and technologies, pp 183-186,
2011.

[2] A. Deepak, K. Pooja, T. Alpika, S. Sharma,
“Software quality estimation through object
oriented design metrics”, IJCSNS International
journal of computer science and network security,
april 2011, pp 100-104.

[3] B. Henderson, seller, “object oriented metrices:
measure of complexity”, Prentice Hall, 1996.

[4] A. Shaik, C.P.K. Reddy, B. Manda, prakashine,
K. Deepti, “Metrics for object oriented design
software system:A Survey”, Journal of emerging
trend in engineer and applied science (JETEAS),
pp 190-198, 2010

[5] N. Fenton et al, “Software metrices: a rigorous
and practical approach”, International Thomson
computer press 1996.

[6] L.C.Briand, J.Wuest, J.Daly and V. Porter,
“Exploring the Relationships Between Design
Measures and Software Quality In Object
Oriented Systems”, Journal of Systems and
Software, 51, 2000.

[7] L.C. Briand, W.L. Melo and J.Wust, “Assessing
the Applicability of Fault Proneness Models
Across Object Oriented Software Projects”, IEEE

transactions on Software Engineering. Vol.
28,No. 7, 2002.

[8] P.Coad and E.Yourdon, “Object Oriented
Analysis”, Yourdon Press, 1990.

[9] W. Li, Sallie, Henry “Metrics for Object-Oriented
system”, Transactions on Software Engineering,
1995.

[10] L.H. Rosenberg and L.Hyatt, “Applying and
interpreting object oriented metrics”, Proceedings
of software technology conference, utah, April
1998.

[11] C. Shyam, Kemerer, F. Chris, "A Metrics Suite
for Object- Oriented Design" M.I.T. Sloan School
of Management, pp. 53-315, 1993

[12] R. Harrison, Samaraweera, L.G. Dobie and
Lewis, P.H: Comparing Programming Paradigms:
An Evaluation of Functional and Object-Oriented
Programs, Software Eng. J., vol. 11, pp. 247-254,
July 1996.

[13] M. Alshayeb and Li.W.,”An empirical validation
of object-oriented metrics in two different
iteration software processes”, IEEE transactionod
Software Engineering, Vol-29, no-.11, Nov 2003.

 [14] C. Shyam and C. F. Kemerer, “Towards a
Metrics Suite for Object Oriented Design”,
Proceeding on Object Oriented Programming
Systems, Languages and Applications Conference
(OOPSLA’91), ACM, Vol. 26, Issue 11, Nov
1991, pp. 197-211.

[15] C. Shyam and C. F. Kemerer, “A Metrics Suite
for Object Oriented Design”, IEEE Transactions
on Software Engineering, Vol. 20, No. 6, June
1994, pp. 476-493.

[16] Li W., “Another Metric Suite for Object-
oriented Programming”, The Journal of System
and Software, Vol. 44, Issue 2, December 1998,
pp. 155-162.

[17] C. Jones, “Estimating Software Costs: Bringing
Realism to Estimating”, 2nd Edition, Mc Graw
Hill, New York, 2007.

[18] V.L.Basili, L. Briand and W. L. Melo,
“Avalidation of object-oriented Metrics as
Quality Indicators”, IEEE Transaction Software
Engineering. Vol. 22, No. 10, 1996, pp. 751-761.

[19]M. Lorenz, J. Kidd, “Object Oriented Software
Metrics”, Prentice Hall, NJ, (1994).

[20] R. D. Neal, “The Measurement Theory
Validation of Proposed Object-Oriented Software
Metrics”, Dissertation, Virginia Commonwealth
University, (1996).

[21] J. V. Gurp, J. Bosch, “Design, Implementation
and Evolution of Object-Oriented Frameworks:
Concepts and Guidelines”, Software- Practice and
Experience, 31, (3), (2001), 277–300.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

23

[22] H. Fujiwara, S. Kusumoto, K. Inoue, A. Suzuki,
T. Ootsubo, K. Yuura, “Case Studies To Evaluate
a Domain Specific Application Framework Based
on Complexity and Functionality Metrics”,
Information and Software Technology, 45, (1),
(Jan 2003), 43–49.

[23] L. H. Etzkorn, W. E. Hughes, C. G. Davis,
“Automated Reusability Quality Analysis of OO
Legacy Software”, Information and Software
Technology, 43, (5), (2001), 295–308.

[24] G. Manduchi, C. Taliercio, “Measuring Software
Evolution at a Nuclear Fusion Experiment Site: A
Test Case for Applicability of OO and Reuse
Metrics in Software Characterization”, 44, (10),
(2002), 593–600.

[25] J. Bansiya, C. G. Davis, “A Hierarchical Model
for Object-Oriented Design Quality Assessment”,
IEEE Transactions on Software Engineering, 28,
(1), (2002), 4–17.

[26] G. Subramanian, W. Corbin, “An Empirical
Study of Certain Object-Oriented Software
Metrics”, Journal of Systems and Software, 59,
(1), (2001), 57–63.

[27] K. Morris, “Metrics for Object-oriented
Software Development Environments,” Masters
Thesis, MIT, 1989..

[28] Booch, G: Object-Oriented Analysis and Design
with Applications, 2nd ed., Benjamin Cummings,
1994.

[29] R. S. Pressman: ―Software Engineering, Fifth
edition, ISBN 0077096770.

[30] Chen J.Y Lum: "A New Metrics for Object-
Oriented Design."Information of Software
Technology 35, 4(April 1993):232-240.

[31] Abreu, B. Fernando: "The MOOD Metrics Set,"
Proc. ECOOP'95 Workshop on Metrics, 1995.

[32] Alexander et al 2003,.Mathematical Assessment
of Object-Oriented Design Quality., IEEE
Transactions on Software Engineering, VOL. 29,
NO. 11, November 2003.

[33] H.Lilu, K.Zhou and S.Yang: “Quality metrics of
OOD for Software development and Re-
development”, First Asia-Pacific Conference on
Quality Software, August 2002.

[34] M.Subramanyam and R.Krishnan: “Emphirical
Analysis of CK metrics for OOD complexity:
Implication for software defect”, IEEE transaction
on software engineering, 2003.

[35] R.Harrison, S.J.Counsell and R.V.Nithi: “An
evaluation of the MOOD set of OOSM”, IEEE
Transaction on Software Engineering, vol.24
no.6, pp.491-496, June 1998. JürgenWüst, “SD
METRICS TOOL”, in der Lache 17, 67308

[36] J.Eder, G.Kappel and M.Schreft, “Coupling and
Cohesion in ObjectOriented Systems”, Technical
Report University of Klagenfurt, 1994.

[37] B. F. Abreu: “Design metrics for OO software
system”, ECOOP’95, Quantitative Methods
Workshop, 1995.

[38] Abreu, B. Fernando, Rita, Miguel, G.: “The
Design of Eiffel Program: Quantitative
Evaluation Using the MOOD metrics”,
Proceeding of TOOLS’96 USA, Santa Barbara,
California, July 1996.

[39] A. Kaur, S. Singh and K. S. Kahlon, Evaluation
and Metrication of Object Oriented System”,
Proceedings of the International Multi Conference
of Engineers and Computer Scientists 2009, I
IMECS 2009, March 18 - 20, 2009, Hong Kong.

[40] F.Brito, E. Abreu and W. Melo, 1996,
“Evaluating the Impact of Object-Oriented
Design on Software Quality”, 3rd Int‘l S/W
Metrics Symposium, March 1996, Berlin,
Germany

[41] S.R.Chidamber and C.F.Kemerer. A metrics
suite for object oriented design. IEEE
Transactions on Software Engieneering , pages
476 – 493, June 1994.

[42] Dr B.R. Sastry, M.V. Vijaya Saradhi, “Impact of
software metrics on Object Oriented Software
Development life cycle”, International Journal of
Engineering Science and Technology, Vol 2 (2),
pg 67-76, 2010.

[43] R. Subramanyam and M.S. Krishnan, “
Empirical Analysis of CK metricsfor Object
Oriented Design Complexity: Implications of
Software defects” IEEE transactions on Software
Engineering, vol 29, no- 4, 2003.

[44] Dr K. M. Breesam, “Metrics for Object Oriented
design focusing on class Inheritance metrics”, 2nd
International conference on dependability of
computer system IEEE, 2007.

[45] C. Neelamegan, Dr. M. Punithavalli, “A Survey-
Object Oriented quality metrics”, Global journal
of Computer Sc. And Technology, Vol 9, no 4,
2009.

[46] A. Goldberg, Robson, D., “Smalltalk-80: the
language and its implementation”, Reading, MA:
Addison Wesley, 1983.

[47] M.A. Eliss & B. Stroustrup, “The annotated C++
Reference manual”, Reading MA: Addison-
Wesley, 1990.

[48] Rosenberg Linda, “Software Quality Metrics for
Object Oriented System Environments”, A report
of SATC’s research on OO metrics.

[49] F. Brito, E. Abreu (INESC/ISEG), Miguel
Goulao, Rita Esteves (INESC/IST), “Towards the
Design Quality Evaluation of Object Oriented

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

24

Software System”, Revised version: originally
published in Proceedings of 5th International
Conference of Software Quality, Austin, Texas,
23 to 26 October, 1993.

[50] A. L. Baroni, “Foramal Definition of Object
Oriented Design Metrics”, MS Thesis, Vrije
Universities Brussels-belgium, 2002.

[51] Abreu, Brito F. and Carapuca, Rogerio,
“Candidate Metrics for Object –Oriented
Software within a Taxonomy Framework”,
Proceddings of AQUIS’93 (Achieving Quality In
Software), Venice, Italy, October 1993: selected
for reprint in the Journals of Systems and
Software, Vol. 23 (I), pp. 87-96, July 1994.

 [52] S. Chidamber and C. Kemerer, “A metrics Suite
for Object Oriented Design”, IEEE Transaction
on Software Engineering, June 1994, pp 476-492.

[53] J. Xu, H. Danny, L. Fernando Capretz, An
Empirical Validation of Object-Oriented Design
Metrics for Fault Prediction,. Jo] urnal of
Computer Science, Vol: 4, No: 7, pp. 571-577,
2008.

[54] Y. Zhou, H. Leung, “Empirical Analysis of
Object-Oriented Design Metrics for Predicting
High and Low Severity Faults”, IEEE transaction
on software engineering, vol. 32, no.10, pp-771-
789,2006.

[55] R.S.Pressman,”Siftware Engineering-A
practioners Approach” Fourth Edition, Mc.
Graww Hill International Edition 1997

[56] E.V.Berrad, “Metrics fot Object-Oriented
Software engineering”, The Object Agency.

[57] V.L &C.C., Manager, SATC “Principal
Commpnents of orthogonal Object-oriented
metrics (323-08-14)”, white paper analysing the
result of NASA object-oriented data, May 29,
2003.

[58] Fairy Richard, “Software engineering
Concepts”, Tata Mc Graw Hill, 2003.

