
IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

80

A Novel Security Approach in Mobile AgentA Novel Security Approach in Mobile AgentA Novel Security Approach in Mobile AgentA Novel Security Approach in Mobile Agent

Using Using Using Using EncryptionEncryptionEncryptionEncryption

Nidhi Gupta1, Dr. Anurag Dixit 2

1M.Tech Scholar1, M.D.U Rohtak, BRCM CET Bahal

nidhi_gupta_11@yahoo.co.in

 2Professor and Head (CSE), M.D.U Rohtak, BRCM CET Bahal
anuragdixit@gmail.com

Abstract
The appearance of software agents has given rise too much
discussion of what such an agent is and how it differs from
programs in general. An agent is anything that can be
viewed as perceiving its environment through sensors &
acting upon that environment through actuators. The
existing systems can be classified in the context of single-
agent systems and multi-agent systems. Mobile agents can
transport themselves from one host to another. Mobile
agents have been developed as an extension to and
replacement of the client-server model. The proposed
system is Mobile Agent System. It reduces network load
and latency in which there is usually no transmission of
intermediate result. This conserves the network bandwidth
.Since the agents are autonomous; the mobile device that
dispatches the agent need not be connected all the time.
Keywords: Mobile Agent, Encryption, Aglet.

1. Introduction

An agent is a computational entity which acts on
behalf of other entities in an autonomous fashion,
performs its activities with some level of pro-activity
and/or reactivates exhibits some degree of the key
attributes of learning, co-operation and mobility.

The existing systems can be classified in the context
of single-agent systems and multi-agent systems. In
single-agent systems, an agent performs a task on
behalf of a user or some process. While performing
its task, the agent may communicate with the user as
well as with local or remote resources, but it will
never communicate with other agents. In contrast, the
agents in a multi-agent system may extensively
cooperate with each other to achieve their individual
goals. Of course, in those systems, agents may also
interact with users and system resources.

There is a significant difference between mobile
agents and simple "traditional" mobile Code. This
difference can be described by two kinds of mobility:

a) Remote Execution (which means that a program is
sent to a remote location before its activation and
remains at this location during its entire life time) and

b) Migration (which means that a program/mobile
agent is able to change its location during its
execution.

Mobile agent is a program that can migrate from
machine to machine in a heterogeneous network. The
program chooses when and where to migrate. It can
suspend its execution at an arbitrary point, transport
itself to another machine and resume execution. It
contains:

•Code - the program that defines the agent’s
behavior.

•State - the agent’s internal variables etc., which
enable it to resume its activities after moving to
another host.

•Attributes - information describing the agent, its
origin and owner, its movement history, resource
requirements, authentication keys, etc. for use by the
infrastructure. Part of this may be accessible to the
agent itself, but the agent must not be able to modify
the attributes.

Mobile agents can be regarded as an alternative of the
traditional client-server paradigm. While the client-
server paradigm relies on remote procedure calls
across a network, mobile agents can migrate to the

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

81

desired communication peer and take advantage of
local interactions.

2. Mobile Agents and Mobile Agent
Environment

A mobile agent environment is a software system,
which is distributed over a network of heterogeneous
computers.

A mobile agent is a software entity, which exists in a
software environment known as mobile agent (MA)
environment as shown in Fig. 1.

Fig : Mobile Agents and Mobile Agent Environment

The mobile agent environment is built on top of a
host system and its primary task is to provide an
environment in which mobile agents can execute.
Mobile agents can travel between mobile agent
environments. They can communicate with each
other either locally or remotely.

2.1 Mobile agent based approach

A mobile agent is created and is sent to the remote
web – server for information retrieval and all the
communication and processing is done by the agent
locally and eliminates lots of communication
overheads that occur in a normal client - server based
approach.

Fig : Mobile agent based approach

3. Aglet 2.0.2

Mobile agents are the basis of the emerging
technology which makes it easier to design,
implement and maintain distributed systems. Mobile
agents have the unique ability to transport themselves
from one system in a network to another. As mobile
agents reduce network traffic, overcome network
latency and most importantly their ability to operate
asynchronously and autonomously. It helps to
construct more robust and fault tolerant systems.
Aglets are Java objects that can move from one host
on the internet to another. That is, an aglet can
execute on one host, can stop its execution,
dispatches itself to other host and resume its
execution on new remote host. On moving from one
system to another aglet carries its code and data with
it. The word aglet means “lightweight agent” in much
the same way that applet means lightweight
application. The term aglet is a combined work of
agent and applet Aglet is developed by research team
at the IBM Tokyo Research Laboratory in Japan in
early 1995 and is now open source. Aglets are hosted
by an aglet server in a similar way in which an applet
is hosted by a web browser. The Aglet server
provides an environment where agents can execute
and Java language and Aglet security manager make
the agents transfer safe. The Aglets Software
Development Kit (ASDK) is an implementation of an
Aglet API. The ASDK includes Aglet API packages,
documentation, sample aglets, and the Tahiti Server.

3.1 Basic Elements

The aglet object model explains some abstraction and
the behavior which is used to take full advantage of
this agent technology. The abstractions which are
used are:
1. Aglet: an aglet is a java object which moves in a
network and gets executes on host which are aglet
enabled. It is autonomous and run in its own thread.
2. Proxy: a proxy is a representative of an aglet. It
also protects the aglet from direct access to its public
methods. The proxy also provides the location
transparency for the aglet.
3. Context: a context is where an aglet executes. It is
a stationary object that provides a means for
maintaining and managing aglets.
4. Identifier: an identifier is bound to an aglet. This
identifier is globally unique an immutable throughout
the lifetime of the aglet.
The following list has summarized the fundamental
operation of an aglet

• Creation: the creation of aglets takes place in a

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

82

Context. The new aglet is assigned an identifier,
inserted into the context, and initialized.

• Cloning: the cloning produces exact copy of the
original aglet in the same context.

• Dispatching: dispatching an aglet from one context
to another will remove it from its current context
and insert into the destination context, where it will
restart execution. This process is termed as
dispatching.

• Retraction: the retraction will pull aglet from its
current context and insert it into the context from
which the retraction was requested.

• Activation and Deactivation: the deactivation of an
aglet will halt its execution for the mentioned amount
of time and store its state in secondary storage.
Activation will again restore it in the same context.

• Disposal: the disposal of an aglet will halt its
current execution and remove it from its current
context.

3.1.1 Security Model

This section describes the security model that
provides an overall framework for aglet security as is
shown by the Luca Ferrari in its aglets manual.

3.1.2 Principals

Principals in agent system are authenticated identities
that are used to enforce the policies that are defined
by authorities and to authenticate the developer of the
program or the host it is communicating with.

• Aglet: as they are autonomous in nature, it is
reasonable to assume that they can define their own
security policies. There are three roles for aglet
principles:

1. Aglet: an aglet object is the thread responsible for
executing the aglet.

2. Aglet manufacturers: the aglet manufacturer
represents the person or organization that
implemented the aglet program. The behavior
with proper permissions is also set by these
manufacturers.

3. Aglet owners: the aglet owner represents the
person or organization that launched the aglet.
Because the owner is responsible for its aglet, this
principal is used for authorization of the aglet

• Context and Server: contexts and servers are
responsible for keeping the underlying operating
system safe by protecting it from malicious aglets. A
server defines a minimal security policy to protect
local resources. On the other hand, each context is
responsible for hosting visiting aglets, and it enables
the access to various local resources. There are three
roles for context and server principals:

Context: a context is a place that hosts aglets.

Context manufacturer: this is the manufacturer of a
context server. As with aglets, it is in a
manufacturer’s concern that no one be able to claim
damage caused by a malfunctioning context and
server.

Context owner: the context represents the context
owner. This Principal is used for authenticating hosts
in the role of sender and receiver of aglets.

Network Domain: the domain can be represented as
the group of servers. The Principal of the domain
authority is used to authenticate whether a server is
member of its domain or not. A network domain is
responsible for keeping its network secure so that all
incoming aglets can complete their tasks safely.

3.1.3 Permissions

 Permissions define the capabilities of executing
aglets by implementing the access restrictions and
limits on resource usage. Permission is a resource,
such as a local file, together with appropriate actions
such as reading or writing a file, listening to a
network port, or creating a desktop window. Several
permissions are available for aglets:

File permission: Access to the local file system is
also subject to control. The aglet can be granted
access to a specific file or an entire directory File
Permission “/tmp/*” “read Network permissions: the
aglet can be granted access to a specific host or to
listen on a specific port.

Context Permission: an aglet can be given permission
to use services provided by the context. This may
include access to methods for creating, cloning,
dispatching, retracting, deactivating and activating
aglets.

Aglet Permission: the methods provided by
individual aglets also need some control. An aglet
can be allowed to invoke methods in another aglet

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

83

owned by a principal given by a name.

3.1.4 Protections

Although an aglet may be granted access to a
resource or other aglets, it may also want to protect
itself from access by other entities. For example, it is
reasonable for user to request that an aglet should be
disposed by you only, whereas other methods may be
publicly accessible.

3.1.5 Policy and Authority

A policy authority is the person or organization for
resources consumed by other entities. In this security
model there are three authorities:

• Aglet owner: as the aglets are autonomous
in behavior, it reasonable to assume that
they can define their own security policy.
The main objective of the aglet owner is to
protect the aglet from attacks. The aglet
owner defines the security policies for
aglet. When an aglet migrates to remote
host or a context, it requests the host to
implement the security policy.

• Context owner: a context authority keeps the
server and its system safe from malicious
agents. It defines the action that an aglet can
take in a particular context.

• Network domain owner: network domain is
responsible for keeping its network of
system secure so that aglets can securely
execute and finish their task.

3.2 Agent Transfer Protocol

ATP is a simple application-level protocol

designed to transmit an agent in an agent system-

independent manner. An ATP request consists of a

request line, header fields, and content. The request

line specifies the method of the request, while the

header fields contain the parameters of the request.

ATP defines the following four standard request

methods:

Dispatch

 The dispatch method requests a destination

agent system to reconstruct an agent from the

content of a request and to start executing

the agent. If the request is successful, the

sender must terminate the agent and

release any resources consumed by it.

Retract

The retract method requests a destination agent

system to send a specified agent back to the

sender. The receiver is responsible for

reconstructing and resuming the agent. If the

agent is successfully transferred, the receiver

must terminate the agent and release any

resources consumed by it.

Fetch

The fetch method is similar to the GET methodin

HTTP; it requests a receiver to retrieve and send

any identified information (normally class files).

Message

The message method is used to pass a message

to an agent identified by a agent-id and to

return a reply value in the response.

Although the protocol adopts a request/reply

form, it does not lay down any rules for a

scheme of communication between agents.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

84

4. Java Aglet Characteristics

Java is excellent for designing and programming
mobile agents. Java has many built in features that
qualify it to be the first choice in agent programming.
Because of the byte-code concept the Java
compiler offers, java applications are able to be
executed anywhere, on any computer of the
network, no matter of the underlying Operating
System or Hardware. Java does not support
dangerous pointer operations that are able to
overwrite memory parts and corrupt data in such
ways. The “Sandbox” principle the Java Runtime
creates makes it extremely safe to execute code
received from the network. In short, the most
positive aspects of using Java are:

Platform independence

Secure execution

Further aspects are: dynamic class loading

 multithread programming object serialization

 reflection There are several drawbacks to the Java

Virtual Machine Concept, these are:

1. Inadequate Support for Resource
Control (may result into Denial
Service Attacks)

2. No Object Ownership of
References

3. No Support for Preservation and

Resumption of the Execution

State (only internal agent

attributes and some external

events may be used to

reconstruct the execution state of

a Mobile Agent)

4.1 Agent Execution Environment

Aglets Tahiti server is used as the agent
execution environment which provides support
for agent creation, arrival, dispatch and agent
management. Tahiti is an application program that
runs as an aglet server and provides a User
Interface (Figure) that can be used to view and
activate events on an aglet. It also enables the user to
set access and network privileges for the aglet server.

 Figure 4.1 Tahiti: The Aglet Viewer

To run Tahiti you simply have to open a command

window, e.g. UNIX shell or DOS window, and by

executing a script

� Agletsd

which launches Tahiti on the host machine.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

85

Once launched the server runs on a port on

the computer, the default being port 4434

i.e. the daemon which the aglets runs on will

listen for incoming aglets on port 4434. The

launching script has a number of switches

that the user can enable to modify the setting

up of the server. For example if user

wanted to launch on a specific port on

user’s host machine user would use the -port

switch e.g. agletsd -port 8000 which would

launch the server on port 8000 of the host

machine The first time Tahiti is run a

registration panel is launched in which the

user enters information with which he/she

uses to identify themselves to the agent

system. This information (which is simply

the user’s name, organization, and e-mail

address) is also used to tag aglets that are

created by this server with their owner’s

identity. This way if an aglet of user’s is

running on a remote server when it

executes a line of code which causes the

aglet to throw an exception that stops the

aglet returning to user’s system then the user

of this remote server now has access to

contact information with which they can

notify user of the status of aglet .

Once this registration has been successfully

completed the primary Tahiti window is launched

from which the user can now perform various

functions to monitor and control an aglet’s

lifecycle with a simple and intuitive GUI. This

GUI has a series of clickable buttons which in turn

launch windows that enable the user to perform the

major events that affect an aglet’s lifecycle.

• Aglet: This menu allows the user to select

actions to modify an aglet’s lifecycle and

duplicates the Create, Dialog, AgletInfo

and dispose clickable buttons that are

present on the server panel as well as

methods to kill an aglet (i.e. dispose of

it, overriding the ondisposal method) and to

shutdown the server.

• Mobilty: This menu allows the user to send

requests to an aglet to manuplate its mobility

and as well as duplicating the

Pispatch,Retract clickable buttons it also has

option to Deativate and Activate an aglet.

• View: In this menu the user can open

window panels which detail memory usage

and also a log of the aglet’s behaviour

(actions) on the server. It also contains two

options which are yet to be implemented:

age, which presumably for getting the

time that the aglet has been running in the

server, and the Java Console which would

be for the new Java Visual compiler

• Options: This menu panel allows the
user to modify the setting options for
Tahiti, each of which are detailed below

• General Preferences: This panel allows

the user to modify the font of the text in the

GUI, specify an aglet that is launched

when the server starts up, clear the Class

cache and to modify their User

information which is initially inputted in

the registration panel.

• Network Preferences: Allows the user

to specify a HTTP proxy through their

aglets can be launched if their network uses

a firewall.

• Security Preferences: This panel is

used by the user to specify the security

privileges for trusted and untrusted aglets

on the File System, Network Access,

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

86

Properties and others.

Related Work

John K. Ousterhout presents Safe Code
Interpretation. In safe Code Interpretation Agent
systems are often developed using an interpreted
script or programming language. The main
motivation for doing this is to support agent
platforms on heterogeneous computer systems. The
idea behind Safe Code Interpretation is that
commands considered harmful can be either made
safe for or denied to an agent.

John K. Ousterhout, Jacob Y. Levy, and Brent B.
Welchbased suggested Safe Tcl System which was
used in the early development of the Agent Tcl
system. Safe Tcl employs a padded cell concept,
whereby a second “safe” interpreter pre-screens any
harmful commands from being executed by the main
Tcl interpreter. The term padded cell refers to this
isolation and access control technique, which
provides the foundation for implementing the
reference monitor concept.

Günter Karjoth, Danny B. Lange, and Mitsuru
Oshima presented Signed Code technique. It is a
fundamental technique for protecting an agent system
or other objects with a digital signature. A digital
signature serves as a means of confirming the
authenticity of an object, its origin, and its integrity.
The author of the agent either an individual or
organization, may use a digital signature to indicate
who produced the code, but not to guarantee that the
agent performs without fault or error.

William Farmer, Joshua Guttman, and Vipin Swarup
State Appraisal suggested State Appraisal technique.
The goal of State Appraisal is to ensure that an agent
has not been somehow subverted due to alterations of
its state information. It is not clear how well the
theory will hold up in practice, since the state space
for an agent could be quite large, appraisal functions
for obvious attacks may be easily formulated.

G. Necula and P. Lee presented Proof Carrying Code
technique. Proof Carrying Code is a prevention
technique, while code signing is an authenticity and
identification technique used to detect, but not
prevent the execution of unsafe code. They include a
standard formalism for establishing security policy,
automated assistance for the generation of proofs.
This technique is tied to the hardware and operating
environment of the code consumer, which may limit
its applicability.

Karjoth and his associates devised a platform
oriented technique for encapsulating partial results,
which reformulated and improved on the PRAC
technique. The approach is to construct a chain of
encapsulated results that binds each result entry to all
previous entries and to the identity of the subsequent
platform to be visited.

Vigna presented an approach that allows a mobile
agent owner (under certain assumptions1) to detect
any possible attempt to tamper with agent data, code,
and execution flow. The proposed mechanism does
not require dedicated tamperproof hardware or trust
between parties, both advantageous when designing a
generic solution for mitigating part of the malicious
host platform problem.

Haiyan Che, Dali Li, Jigui Sun, and Haibo Yu
advocated a novel understanding and definition of
mobile agent: a data package describing the tasks
user required and proposed the security architecture
of TDBMA system. In the TDBMA system, the task-
description-based mobile agents are used to behave
on behalf of users. The Proxy/Manage Agency is
responsible to create and dispatch agents to avoid any
individuals sending agents.

Levent Ertaul, Jayalalitha Panda, discuss the
implementation of two of the security approaches
called Mixed Multiplicative Homomorphic
Encryption scheme and Secure Dynamic
Programming. These security approaches protect the
mobile agents from malicious agent platforms. It also
discusses our agent integrity checking mechanism
that is implemented using SHA1 digest algorithm.
These implementations are done in the IBM’s JAVA
Mobile agent system called Aglets and provide
Confidentiality and Integrity services to the mobile
agents.

Yang Kun, Guo Xin, Liu Dayou investigates the
problems & approaches of Mobile agent system,
which show that bi-directional & layered security
model, may be a good idea to resolve the security
problems in mobile agent systems. The main security
problems faced by mobile agents, and propose bi-
directional & layered security model to resolve them
in horizontal direction and vertical direction
respectively.

IJCSMS International Journal of Computer Science & Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231 –5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

87

Objective

•Propose to develop a Mobile Agent System which
tends to provide security features that are specific to
mobile agents but independent of any particular
networked operating system.

•To perform Encryption algorithm that can be used to
ensure that mobile agent and its data do not become
compromised. To perform Decryption algorithm to
acquire data in original perform.

•Comparative study of different algorithm such as
MD5, SHA etc.

Conclusion

Mobile agents can be viewed as an alternative of the
traditional client-server paradigm. While the client-
server paradigm relies on remote procedure calls
across a network, mobile agents can migrate to the
desired communication peer and take advantage of
local interactions. The mobile agent paradigm is
often regarded as a replacement of the client-server
paradigm but a mobile agent based system can be
viewed as an extension of distributed client-server
system. The most relevant design paradigms for
current systems are Client-Server, Remote
Evaluation, Code on Demand, and Mobile Agent. In
the Mobile Agent paradigm the know-how and whole
component are moved to the remote location and this
transferred component executes this code. Mobile
agents are autonomous software entities, which can
migrate through a network of heterogeneous sites to
perform tasks on behalf of their owners.

References

[1] Stamatis Karnouskos. “A Security Oriented
Architectural Approach for Mobile Agent
Systems”.

[2] R. Haghighat far, H. Yarahmadi. “A New
Approach for Mobile Agent Security”
World Academy of Science, Engineering
and Technology 42 2008.

[3] Wayne Jansen, Tom Karygiannis. “NIST
Special Publication 800-19 – Mobile Agent
Security” National Institute of Standards and
Technology Computer Security Division
Gaithersburg, MD 20899.

[4] Levent Ertaul Jayalalitha Panda. “Mobile
Agent Security” California State University,
East Bay, Hayward, CA, USA.

[5] Marco Tranquillin, Carlo Ferrari, Michele
Moro. “Using mobile agents for secure
biometric Authentication “The University of
Padova, Padova Ital.

[6] Harmut Vogler, Thomas Kunkelmann,
Marie-Louise Moschgath . An Approach for
Mobile Agent Security and Fault Tolerance
using Distributed Transactions.

[7] Nikola Mitrovi´c, Unai Arronategui
Arribalzaga. “Mobile Agent security using
Proxy agents and Trusted domains”
University of Zaragoza, Maria de Luna
350018 Zaragoza, Spain.

[8] V. S. Shankar Sriram1, G. Sahoo2. A
Mobile Agent Based Architecture for
Securing WLANs.

[9] A Survey of Mobile Agent Systems by Syed
Adnan, John Datuin, Pavana Yalamanchili.

[10] Yang Kun, Guo Xin, Liu Dayou. “Security
in Mobile Agent System: Problems and
Approaches”.

[11] Haiyan Che, Dali Li, Jigui Sun, and Haibo
Yu. “A Novel Solution of Mobile Agent
Security: Task-Description-Based Mobile
Agent”.

