
IJCSMS International Journal of Computer Science and Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

216

Measurement of Reusability Ratio of Software Measurement of Reusability Ratio of Software Measurement of Reusability Ratio of Software Measurement of Reusability Ratio of Software

Module by Using Pattern Based MetricsModule by Using Pattern Based MetricsModule by Using Pattern Based MetricsModule by Using Pattern Based Metrics

Anil Kumar

 Computer Science & Engineering, Vaish College of Engineering, Rohtak, India

anilbest2005@gmail.com

Abstract
There is no doubt that reusability of software modules
play very important role in software development that
not only reduces the resources, but also reduces effort,
time and cost that are required during software
development. There are numbers of technique
available, which are used to determine reusability
ratio, these technique help to determine reusability
ratio, but not help to reduce the complexity. In this,
proposed metrics are discusses that not only to
determine this but side by side reduces the complexity.

Keywords: OO Metrics, Proposed Metrics.

1.1 Introduction

 In this paper, here we will discuss a
proposed metric that mot only measure
reusability ratio but also helps us how to reduce
the reusability ratio not only during the software
development but also from the starting phase of
software modules. By using proposed metrics we
can determine reusability ratio of software
modules while its actual requirement are takes
place from software requirement specification to
design’ of software modules.

1.2 Problem Description

 There is no doubt that OO metrics, such
as MIF, AIF and PF are very important metric
that will measure the reusability of software
modules during software development. The
value of PF indicates the reusability. However, if
its values are continuously increases than after
specific point, then it is very difficult to
understand and test the software modules.
Therefore, more effort, time and cost are
required not only for understanding but also for
further enhancement and testing.

1.3 OO Metrics

 The OO metrics [1, 2], MIF, AIF and
PF very important metrics that are used to
determines reusability ratios of software
modules. The MIF and AIF metrics measures
the functionality of inheritance. The large value
of MIF and AIF indicate that reusability
increased, but if some modifications is required
it is very difficult to understand/test the software
modules. Therefore, more effort and time are
required to understand and test for software
modules during software development.

1.3.1 Method Inheritance Factor

(MIF) Metric

MIF is the ratio of the sum of the inherited
methods in all classes of the system under
consideration to the total number of available
methods (locally defined plus inherited) for all
classes.

Where Ci is number of classes
Ma (Ci) is the number of method defined in Ci
Md (Ci) is the number of method declared in Ci
Mi (Ci) is the number of method inherited in Ci
TC is the number class

IJCSMS International Journal of Computer Science and Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

217

1.3.2 Attribute Inheritance Factor

(AIF) Metric

AIF is the ratio of the sum of inherited attributes
in all classes of the system on to the total number
of available attributes (locally defined plus
inherited) for all classes.

Where Ci is number of classes

Aa (Ci) is the number of attribute
defined in Ci

Ad (Ci) is the number of attribute
declared in Ci

Ai (Ci) is the number of attribute
inherited in Ci

TC is the number class

1.3.3 Polymorphism Factor (PF)

Metric

Another very important OO metric is
PF, which measure the reusability of methods in
classes. The value of PF indicates reusability, if
its value very high then it is very difficult to
understand and test the software modules.
Therefore more effort and time are required for
test and understand.

PF is the ratio of the actual number of
possible different polymorphic situation for class
Ci to the maximum number of possible distinct
polymorphic situations for class Ci

Where Ci is number of classes

Mn (Ci) is the number of new method defined in

Ci

Mo (Ci) is the number of override method in Ci

DC is the number of docents class in Ci

TC is the number class

1.4 Proposed Metrics

 The pattern metrics [3], DIP, NOP and
CBP play very efficient role to determine
reusability ratio not only during the coding phase
of software modules, but also during the design
phase of software modules. Also play important
role to reduce the reusability ratio that is not
effecting the time and cost, but also help to easy
understand and test the software modules.
DIP metric measures number of packages
inherited in base package and number of classes
that exist in the package. More methods is likely
to inherit, and then it is difficult in predicting the
behavior. Therefore modules should be designed
in such a way during reengineering, that they
reduce the number of methods of package likely
to inherit.
The NOP metric measures the complexity by
determining the number of immediate sub
package of a package and number of immediate
sub-class of a class or derived class. The
complexity increases as the result of the metric
increases.
The CBP metric measures the number of base
package and number of base classes of packages
that inherit in derived package class. It will
measure inheritance complexity during
reengineering of software module. If its value
increases, then complexity also increases

1.4.1. Depth of Inheritance Package

(DIP) Metric:

DIP metric measure the weight of package
inherited in base package that is again related to
size complexity of modules.

Where:

For d is total number of

IJCSMS International Journal of Computer Science and Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

218

package inherited

 P (D) number of base package

1.4.1.1. Depth of Inheritance Tree

(DIT) Metric:

DIT metric measure the weight of class
in the inheritance hierarchy, the greater
the number of methods it is likely to
inherit, making it more complex to
predict its behaviors.

Where:

For I is total number of

inherited method

 P (I) is

number of inherited hierarchy

1.4.2. Number of Package (NOP)

Metric:

NOP metric measure the weight of immediate

sub-package of a package that is again directly

proportional to the size complexity of modules.

Where:

For n is total number sub-package

P (N) number package

1.4.2.1. Number of Children (NOC) Metric:

NOC metric measure the weight of immediate

sub-class of a class or derived class that is again

directly proportional to size complexity of

modules.

Where:

For ch total number of subclass

P (CH) is number of immediate sub class

1.4.3. Count of Base Package (CBP)

Metric:

CBP metric measure the weight of base package

that is again directly proportional to size

complexity of modules.

Where:

b for total number package

P (B) for number of base package

1.4.3.1 Count of Base Class (CBC)

Metric:

CBC metric measures the weight of base class,

which is used to measure inheritance complexity.

IJCSMS International Journal of Computer Science and Management Studies, Special Issue of Vol. 12, June 2012
ISSN (Online): 2231-5268
www.ijcsms.com

IJCSMS
www.ijcsms.com

219

Where:

For c is total number base class

For P (B (C)) is number base class defined

within the package

Conclusion

The proposed metrics help the software
developer to design the software modules in such
a way that will reduces reusability ratio, that help
to easier to understanding and testing. Due to
this it will save cost, time and resources that are
required during development of software
modules.

References

[1] Rambaugh., A Theory of Object-Oriented
Design: The building-blocks of OOD and
notations for representing them (with focus
on design patterns.)

[2] Abreu, F. B. e., "The MOOD Metrics Set,"
presented at ECOOP '95 Workshop on
Metrics, 1995.

[3] Ashok Kumar and Anil Kumar,” Complexity
Measurement During Reengineering by
Using Pattern Based Metrics”, International
Journal of Research and Reviews in
Computer Science (IJRRCS) Vol. 2, No. 6,
December 2011, ISSN: 2079-2557

