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Abstract 
In real life clustering of high dimensional data is a big problem. To 
find out the dense regions from increasing dimensions is one of them. 
We have already studied the clustering techniques of low dimensional 
data sets like k-means, k-mediod, BIRCH, CLARANS, CURE, 
DBScan, PAM etc. If a region is dense then it consists with number of 
data points with a minimum support of input parameter ø other wise it 
cannot take into clustering. So in this approach we have implemented 
CLIQUE to find out the clusters from multidimensional data sets. In 
dimension growth subspace clustering the clustering process start at 
single dimensional subspaces and grows upward to higher dimensional 
ones. It is a partition method where each dimension divided like a grid 
structure. In this paper the elimination of redundant objects from the 
regions by matrix factorization and partition method are implemented. 
The comparisons between CLIQUES with these two methods are 
studied. The redundant data point belongs to which region to form a 
cluster is also studied. 
Keywords: CLIQUE, APRIORI, dense unit 

I     INTRODUCTION 

CLIQUE clustering is a data mining problem 

which finds dense regions (collections of units) in a 
sparse multi-dimensional data set. The attribute 
values or points and ranges of these regions 
characterize the clusters. Data from a database or  
data warehouse having multiple dimensions are 
called attributes. Many clustering algorithms are 
good at handling up to three dimensions. We can 
really observe the clusters up to three dimensions. To 
find out the clusters from the high dimensional data 
sets can be highly skewed. We have taken the 
CLIQUE (Clustering in QUEst) algorithm to find out 
the clusters. CLIQUE automatically finds the dense 
units. The dense units are present in subspaces of the 
increasing dimensions. It scales linearly with the size 
of input and has good scalability as the number of 
dimensions in the data increased. The data are 
present in the different clusters are may be 

redundancy in nature. The redundancy of data 
becomes the cluster in large size. Unless the 
computational complexity growths by taking the 
redundant data. In this paper the matrix 
decomposition method is used to eliminate 
redundant data points. The QR-decomposition 
method and partition method used to find the clusters 
as like  CLIQUE algorithm. 
 
II   CLIQUE OVERVIEW 
 
A unit (cell) is a dense if the sum of total data points 
in a unit exceeds the input parameter. Clique 
partitions the m-dimensional data space into non- 
overlapping rectangular units. The dense units are 
identified from these units. The clusters are 
generated from all the subspaces of original data 
spaces, using a Apriori property. If a k- dimensional 
unit is dense, then so are its projections are in (k-1) - 
dimensional space. CLIQUE generates minimal 
descriptions over its data points as follows. 
(i) It first determines the maximal dense regions over 
the data sets in the subspaces  
(ii) Each cluster then determines the minimal cover 
from the maximal regions. 
(iii) If the dimension increases the same procedure 
follows to find out the clusters from the highly 
density covered areas. 

III    PROBLEM STATEMENT 
 

[A] QR DECOMPOSITION WITH GRAM-SCHMIDT 
 
The QR decomposition (also called the QR 
factorization) of a matrix is a decomposition of the 
matrix into an orthogonal matrix and a triangular 
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matrix. The QR decomposition of a real square 
matrix A is a decomposition of A as A = QR. where 
Q is an orthogonal matrix (i.e. QTQ = I) and R is an 
upper triangular matrix. If A is nonsingular, then this 
factorization is unique. There are several methods for 
actually computing the QR decomposition. One of such 
method is the Gram-Schmidt process. 
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[B]   MATRIX PARTITION METHOD 
 
One of the key things in linear algebra is the ability 
to split up a bigger matrix into smaller subsections, 
which is also known as partitioning a matrix. For an 
instance, we have a matrix A. 

2 3 4 5 6

1 3 4 5 1

2 3 4 1 2

1 2 3 4 5

3 1 2 4 1

A

 
 
 
 =
 
 
  

 

Can be partitioned into its subsections based on the 
users discretion. Here is a partitioned Matrix: 

11 12

2 3 4 5 6

1 3 4 5 1

2 3 4 1 2

A A

   
   = =
   
      

 

21

1 2 3

3 1 2
A

 
=  
 

      22

4 5

4 1
A

 
=  
 

 

Finally  11 12

21 22

A A
A

A A

 
=  
 

 

[C]    SUBSPACE CLUSTERING 
 

 CLIQUE was one of the first algorithms 
proposed that attempted to find clusters within 
subspaces (I.e. combination of units) of the dataset. 
As described above, the algorithm combines density 
(which satisfies minimum threshold value) and grid 
(each cell) based clustering and uses an APRIORI 
technique to find subspaces which is more dense 
upon data and clusterable. Once the dense subspaces 
are found they are sorted by coverage, in the 
dimensions where coverage is defined as the units of 
a two dimension dataset covered by the subspace. 
The subspaces with the maximal coverage are kept 
and the rest are pruned. The algorithm then finds 
adjacent dense units in each of the selected 
subspaces using a depth first search. Clusters are 
formed by combining these dense units using a 
greedy growth scheme. The algorithm starts with an 
arbitrary dense unit and greedily grows a maximal 
region in each dimension until the union of all the 
regions covers the entire cluster (maximal regions). 
The intersections of regions are not a cluster. 
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Redundant regions are (called overlapping of 
subspaces) removed by a repeated procedure where 
smallest redundant regions or a unit is having the 
data not satisfies with minimum threshold value are 
discarded. The hyper-rectangular clusters are then 
defined by a Disjunctive Normal Form (DNF) 
expression. A region is a set of axis parallel 
rectangular areas in n- dimensions. Clustering is 
expressed as the union of regions only. The region 
can also be expressed in the mean of DNF 
expressions as described in the Apriori property. We 
say that if a cluster R is over the region F, then      
R= R Ι F. Always the minimal description of a 
cluster is a non redundant covering of the cluster 
with maximal regions. 

V   RELATED WORK 
The data points are present in a 

multidimensional database usually not in a uniform 
manner. The CLIQUE algorithm finds the dense 
units (crowed units) from the multidimensional 
database and discovers the patterns among 
dimensional axes. If the data points are present in a 
unit is dense, then the clusters are formed from these 
dense units. If no units or cells consisting with the 
minimum threshold value or data points, then it 
follows the following rules. 

 
Figure 1 

(i)Assume figure 1 let   ø=2, project along Y-axis 
and count number of data elements from the cells. 
Here the number of data points in the individual cells 
is only one. It is not satisfied with the value of ø, and 

then count the total number of data points along the 
Y-axis represented as {(x3�x4) =2, (x4�x5) =3, 
(x5�x6) =2}. These are greater than or equal to ø. So 
the connected regions are forming individual clusters 
as c1, c2 and c3 as shown in the figure 2. 

 
Figure 2 

If the cells are already satisfied with the minimum 
threshold value then we follow the following logical 
rules to form clusters. For example it was observed 
that. 
 
TABLE 1         PRODUCT TABLE 
 

Occupation Age 
Product 

purchased 
Student 15-30 laptop 

employee 20-25 printer 
 
Age(Y,”15-30”) Λ  occupation(Y,”student”)              
buys(Y,”laptop”)                                             Eq (1) 
Association rules that involve two or more 
dimensions or predicates can be referred to as 
multidimensional association rules. The above rule is 
containing three predicates (age, occupation, buys) 
where each one occurs once. No repetition of 
predicates is present here. Hence multidimensional 
association rules without repeated predicates are 
called inter dimensional association rules. The 
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equation (1) is one of the DNF expressions for the 
table 1. 
DNF expression for clustering   
(i) The dense region has been shaded. c1 Υ c2 is a 

cluster. 
(ii)   c1 or c2 independently are the maximal region 

contained in this cluster.  
(iii) Where c1 Ι c2 is not a maximal region. 
(iv)  The minimal description for this cluster in the 

DNF expression as in the figure 3 is 
((2≤  x ≤ 4) Λ (2 ≤  y ≤  4)) ∨ ((3 ≤  x ≤  5) Λ (1 
≤  y ≤  3)) 

If we apply the density based method for CLIQUE 
then the connected adjacent cells are the maximum 
region in these specified dimensions. So the two 
regions are defined in the figure 3 as c1 and c2. The 
DNF expression for these two regions are as  
      c1= ((2≤  x ≤ 4) Λ (2 ≤  y ≤  4))  
      c2= ((3 ≤  x ≤  5) Λ (1 ≤  y ≤  3)) 
The DNF expression for the cluster which is formed 
from the regions c1 and c2 as given below 
c=(c1Υ c2)= ((2≤  x ≤ 4) Λ (2 ≤  y ≤  4)) ∨ ((3 ≤  x ≤  

5) Λ (1 ≤  y ≤  3)) 
 

       
Figure 3 

  
VI   EXPERIMENAL RESULT 

[A] IMPLEMENTATION OF MATRIX DECOMPOSITION 
METHOD 

 

 In this paper we study the matrix 
factorization method to find the maximal regions. So 
from figure 3 the two regions are c1 and c2. Let the c1 
and c2 consisting the data points are as shown in the 
figure 3. From the association rule mining we 
observed that the cluster from the dense regions with 
refers to figure 3 are shown is as figure 4. Where the 
regions are with minimal description is outlier and it 
is a cluster. This is also done by matrix 
decomposition method to identify a cluster from the 
two regions named as c1and c2. 

 
(Data points from the regions c1 and c2.) 

 

 
Figure 4 

From the  figure 4 it is clear that region c1 contains 
the data points x1,x2,x3,x4 and the region c2 
consisting with  the data points x4,x5,x6,x7. This is 
represented as c1={x 1,x2,x3,x4} and c2={ x4,x5,x6,x7}. 
The matrix and tabular form is denoted as  
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Here the data point x4 is the repeated elements in the 
two subspaces. So to avoid the overlapping of the 
subspaces we have to decide whether the element 
should present in which subspaces or regions? In the 
figure 5 let us assume that x4 is a common point and 
it is present both the regions c1 and c2. The DNF for 
the data point x4 is ((3≤  x ≤ 4) Λ (2 ≤  y ≤  3)). 
 

 
Figure 5 

To solve this problem we take the help of the matrix 
decomposition method. Where A is a matrix and the 
elements x1…x7 are belonging to regions c1 and c2. 

 
And we follow the Gram-Schmidt QR 
Decomposition as  
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So A=QR hence proved. 

The matrix A is decomposed in to two parts as Q and 
R where 
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 Here the region c1 belongs to the data points 
c1={x 1,x2,x3,x4} and the region c2 belongs to the data 
points after decomposition as c2 = {x1,x2,x3,x4, 
x5,x6,x7}. But as referenced to figure 4 c2 is formed a 
new region and it is sufficient to show that it is the 
minimal description of the region. So it is proved 
that if the data point x4 lies in the c1 then it will not a 
cluster. But if the data point will lie in the c2 then it 
is a union of c1 and c2 and finally it is a minimal 
description of the region and it is a cluster. 

[B] IMPLEMENTATION OF MATRIX PARTITION 
METHOD 

So in our problem the elements from dense region 
are shown in the matrix format as.  

 

 Hence it is partitioned as  

 

 

 

From A11   c1={x 1, x2, x3}, c2= {} 
From A12    c1= {x4}, c2={x 4, x5} 
From A13    c1= {}, c 2={x 6, x7} 
A11Υ A12 ={x 1,x2 ,x3, x4, x5} 
A13 = {x6, x7} 
c= {A11Υ A12  Υ A13} = {x 1, x2 , x3, x4, x5, x6, x7 } 
Here the union of all the regions are defined in the 
A11,A12,and A13 is c={x1, x2 , x3, x4, x5, x6, x7 }. This 
is equal to the result of the matrix decomposition 
method i.e. c2 = {x1, x2, x3, x4, x5, x6, x7. 

VII CONCLUSION 
For the CLIQUE clustering the both methods are 
helpful to find the clusters easily as compared to the 
clustering algorithm defined above. In the matrix 
partition method it is difficult to find the partition 
boundaries. After fixing the boundary the work is 
easy. But in the factorization method no such 
boundaries are fixed before the solution but the 
implementation is necessary. 

VIII TIMECOMPLEXITY 
  
If C-number of clusters 
n – Highest Dimensionality 
m- Number of input points 
C-number of clusters 
τ   Number of Intervals 
ø – Density Threshold, Then the time complexity of 
is CLIQUE Numerical Data O(Cn+mn).But in the 
method of matrix factorization the same job may be  
done with the time complexity of O(m2n). 

IX   FUTURE WORK 
  
 In CLIQUE the clusters are formed with 
large overlap among the reported dense regions. It is 
difficult to find clusters of different density within 
different dimensional subspaces. We may use   
entropy as a measure of the quality of subspace 
clusters. The PROCLUS (projected clustering) is a 
typical dimension reduction subspace clustering 
method may implement to find clusters from high 
dimensional subspaces. The PROCLUS starts 
projections from high dimensional subspaces instead 
of single dimensional subspaces. The association 
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rule mining may also implement to find the clusters 
from high dimensional data sets. The factorization 
with Eigen value may implement the process in 
future. 
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