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Abstract
In this paper, the channel is estimated by usiigéaa filter. The
channel is time varying modeled as a low-Pass thpetay line
filter that is work as the FIR filter with time wang Coefficients.
Here Kalman filter technique is used to estimaéetiime varying
coefficient of the channel.
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1. Introduction

Adaptive filter consider various type of filter dkwiener
filter, Kalman filter. Kalman filter has various \ahtages
from others filter. The main feature is Kalmanéilis that
its mathematical formulation is described in telwhstate
space concept. Another advantage is that its solus
computed recursively, applying without modificatitmthe
stationary as well as non-stationary environmeiédman
filter is a liner, discrete time finite dimensionaystem
endowed with a recursive structure that make ataligi
computer well studied for its implementation.

The main property of Kalman filter is that it is mimum
mean square (variance) estimator of the state eoflitter
dynamical system, which follows from a stochastates
space model.

2. CHANNEL ESTIMATION

The estimator means filter. The filter is commounged to
a system that is designed to extract informatioauala
prescribed quantity of interest from noisy dafehe
channel effects like a medium through which thenaigs
travel from sender to receiver. Channel estimat®mno
estimate the filter coefficient through receivednsil and
other known information. The channel is act as gsjglal
medium (free space, fiber etc.) between the traesm
receive through which the signal travel. There twe

channel estimation methods are proposed. The Mawimu
Likelihood (ML) estimator is unbiased, but it is reo
sensitive to noise. The second channel estimatietiad,
based on the minimization of the mean square error
(MMSE).The signal received from the channel is euff
from phase-distortion, inter symbol interferenced an
thermal noise. A channel model on the other hamdbeza
thought of as a mathematical representation ofrdmesfer
characteristics of this physical medium. Most clenn
models are formulated by observing the characiesistf
the received signals for each specific environment.
Different mathematical models that explain the nes
signal are then fit over the accumulated data. Gdteavior

of the received signal is used to model the giveysizal
channel. The Channel estimation is defined as theegs
which characterizing the effect of the physicalroiel on
the input sequence. The channel estimate, estiofattee
impulse response of the system, if the channelnaasgdito
be liner. It must be stressed once more that ctanne
estimation is only a mathematical representatiowlwdt is
truly happening. A good channel estimate is onerahe
some sort of error minimization criteria is sa#sfi(e.qg.
Minimum Mean Square Error (MMSE)).

There is various reasons to estimate the chanmethich
some are as that it allow the receiver calculageitipulse
response. It is used to observe the behavior ofhiaenel.
Diversity techniques (for e.g. the 1S-95 Rake reedi
utilize the channel estimate to implement a matdiiltst
such that the receiver is optimally matched tortéeeived
signal instead of the transmitted one. One of thastm
important benefits of channel estimation is thaalibws
the implementation of coherent demodulation

3. PROBLEM FORMULATION
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The tap delay line model requires that the Naapk are let X" [n] = [x[n], x[n - 1],..., X[n- q + 1]]. Equation (4) is

TuW +1. Where T, is delay spread and W is the equivalentto

information bandwidth. Secondly it requires Tapcipg is

1/W. And it also requires Tap gain function arecti¢e y[n] = x'[n]h[n] + w{n] (5)

time complex Gaussian processes with variances.ldvine

pass tap delay model act as a FIR (finite Impudsponse) We can now form the minimum mean square error

with their time varying coefficient. (MMSE) estimator for the tapped delay line weights

A low-pass tapped delay line model of the time wragy  recursively in time using the Kalman filter for ghi

channel is really nothing more than an finite inggul particular problem (vector state and scalar obsienmns).

response (FIR) filter with time varying coefficisntThe

input-output description of the FIR filter with tervarying 4. KALMAN FILTER

coefficients is Kalman filter is a MMSE (minimum mean square

i error) estimator of a signal embedded in noise,rahe

o[n] = N [klxn — K] the signal is characterized by a dynamic or state
T L model. If the signal and noise are jointly Gaussian

then the Kalman filter is an optimal MMSE estimator

Where R[k] are the time varying coefficients of the and if not, it is the optimal LMMSE estimator.

channel. On the basis of corrupted output of thenokl Equation (3) represents the vector state model and

we have to estimate thefkl. equation (5) is scalar observation or measurement

equation. The Kalman filter equations for this peoi

yin] =sin+win] re 4]

] +wln] =Zi2% i, [Klx [ — &] +win]

Wherew[n] is assumed to be white Gaussian noise (WGN) VI
with variances -,
Assume that the weights will not change rapidlynfro
sample to sample. For Example, a slow-fading channe 7
Statistically, we may interpret the slow variatias a high
degree of correlation between samples of the sape t
weight. This observation leads us to model thewajghts
as random variables whose time variation is desdrly a
Gauss-Markov model. The use of such a signal model
allows us to fix the correlation between the susives
values of a given tap weight in time. Hence, wepsise Fig.1 Channel true weights
the state vector is

h[n] = Ah[n-1] + u[n]

where h[n] = [R[0],hA[1],...,ha[a-1]]", Prediction: .
A is a known g matrix, h[njn-1] = Ah[n-1jn-1]
u[n] is the vector WGN with covariance matrix Q.
A standard assumption that is made to simplify the
modeling is that of the uncorrelated scattering [@le M[nn-1] = AM[n|n-1]AT + Q
assume that the tap weights are uncorrelated vetih e

Minimum Prediction MSE matrix{ = g):

other and hence independent due to jointly GaussianK"’llm"’ln Gain:

assumption. As a result, we can lefQAand G, the . M[n|n — 1]x[n]
covariance matrix of h[-1] be diagonal matrices.eTh &[n]= o2+ x’ mM[nin — 1lx[n]
vector Gauss-Markov model then becomesdependent o i
scalar models. The measurement model is, from (2) Correction:

A= bl e q e R i) = [nin-2) + KIntn] - Xn] B [nin-L)

Minimum MSE
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M[nln] = (l _ K[n]XT[n])M[ nln_l] . True values of the weights
Initialization matrices are: 181 IZEZEISEI ::Fw]}
AL | -1]= =
= 14p
M[-1|-1]=C. g,
g
5. SIMULATION AND RESULTS éo_s—
Let the Kalman filter estimator hage= 2 weights. é o
04r
o _[0.99 0
Assume a state model Wlth—[ 0 . ggq] and 02t

=
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0 0.0001
shown in Fig. 2, in whictn,[0] is decaying to zero while
h,[1] is fairly constant. This is because the mearthef
weights will be zero in steady state. Due to thalen 3
value of [Ali;, h,[0] will decay more rapidly. Also, note
that the eigen values of A are just the diagonaimehts
and they are less than 1 in magnitude. The olp is at
determined from (1). When observation noise is ddde
with =% = 0.1, the channel outpyfn] is shown in Fig. 4.
Leth[-1 -1] ==, = 0 and M[-1 -1] = G = 100I, which were
chosen to reflect little knowledge about the inhisitate. In

]True values of the weights are
Fig.2 True values of the weights
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the theoretical development of the Kalman filtez thitial e
state estimate is given by the mean of s[-1]. 0
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Fig.4 channel output y[n]
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Fig 3 input sequence

Fig. 5 estimated Tap weight
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In practice this is seldom known, so that we usupilst
choose an arbitrary initial state estimate witlarge initial
MSE matrix to avoid “biasing” the Kalman filter tands
that assumed state. The estimated tap weightdharensn
Fig. 5. After an initial transient the Kalman filtélocks

on" to the true weights and tracks them closelye Th

Kalman filter gains are shown in Fig. 6.

They appear to attain a periodic steady-statepadih this
behavior is different than the usual steady-s&itee xp]

varies with time and so true. steady-state is natteined.
Also, at times the gain is zero, as for exampl¢kin, =

ki[n] for 0 = n = 4. This is because at these times the
input x[n] is zero and thus the observation contain only

noise. The Kalman filter ignores these data samples
forcing the gain to be zero. Finally, the minimunBis
are shown in Fig. 7

Kalman gain

Kalman gain K1[n]
Kalman gain K2[n]

1t

081

06|

04}

02r

) —

Kalman gain K1[n] Kalman gain K2[n]

02}

04t

L | L L L L L ! ! I
0 100 200 300 400 500 800 700 800 900 1000
sample number n —>

Fig.6 Kalman filter gain

minimum mean square error graph
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Fig.7 Minimum MMSE

6. CONCLUSION

In this paper, the channel is modeled as an FtBrfikith

time varying coefficients. The observation model is
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assumed to be Gauss-Markov for tap weights. Kalman

filter is used to estimate the time varying coeédiitts of the
channel
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