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Abstract 
In this paper, the channel is estimated by using kalman filter. The 
channel is time varying modeled as a low-Pass tapped delay line 
filter that is work as the FIR filter with time varying Coefficients. 
Here Kalman filter technique is used to estimate the time varying 
coefficient of the channel. 
 Keywords: Time varying channel, channel estimation, Kalman 
filter. 

1. Introduction 

Adaptive filter consider various type of filter like wiener 
filter, Kalman filter. Kalman filter has various advantages 
from others filter. The main feature is Kalman filter is that 
its mathematical formulation is described in terms of state 
space concept. Another advantage is that its solution is 
computed recursively, applying without modification to the 
stationary as well as non-stationary environments. Kalman 
filter is a liner, discrete time finite dimensional system 
endowed with a recursive structure that make a digital 
computer well studied for its implementation. 
The main property of Kalman filter is that it is minimum 
mean square (variance) estimator of the state of the liner 
dynamical system, which follows from a stochastic state 
space model.  

2. CHANNEL ESTIMATION 

The estimator means filter. The filter is commonly used to 
a system that is designed to extract information about a 
prescribed quantity of interest from noisy data. The 
channel effects like a medium through which the signal is 
travel from sender to receiver. Channel estimation is to 
estimate the filter coefficient through received signal and 
other known information. The channel is act as a physical 
medium (free space, fiber etc.) between the transmitter & 
receive through which the signal travel. There are two 

channel estimation methods are proposed. The Maximum 
Likelihood (ML) estimator is unbiased, but it is more 
sensitive to noise. The second channel estimation method, 
based on the minimization of the mean square error 
(MMSE).The signal received from the channel is suffer 
from phase-distortion, inter symbol interference and 
thermal noise. A channel model on the other hand can be 
thought of as a mathematical representation of the transfer 
characteristics of this physical medium. Most channel 
models are formulated by observing the characteristics of 
the received signals for each specific environment. 
Different mathematical models that explain the received 
signal are then fit over the accumulated data. The behavior 
of the received signal is used to model the given physical 
channel. The Channel estimation is defined as the process 
which characterizing the effect of the physical channel on 
the input sequence. The channel estimate, estimate of the 
impulse response of the system, if the channel assumed to 
be liner. It must be stressed once more that channel 
estimation is only a mathematical representation of what is 
truly happening. A good channel estimate is one where 
some sort of error minimization criteria is satisfied (e.g. 
Minimum Mean Square Error (MMSE)). 
There is various reasons to estimate the channel. In which 
some are as that it allow the receiver calculate the impulse 
response. It is used to observe the behavior of the channel. 
Diversity techniques (for e.g. the IS-95 Rake receiver) 
utilize the channel estimate to implement a matched filter 
such that the receiver is optimally matched to the received 
signal instead of the transmitted one. One of the most 
important benefits of channel estimation is that it allows 
the implementation of coherent demodulation                                                                           

3. PROBLEM FORMULATION  
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The tap delay line model requires that the  No. of taps are 
TMW +1. Where TM is delay spread and W is the 
information bandwidth. Secondly it requires Tap spacing is 
1/W. And it also requires Tap gain function are discrete 
time complex Gaussian processes with variances. The low 
pass tap delay model act as a FIR (finite Impulse response) 
with their time varying coefficient. 
A low-pass tapped delay line model of the time varying 
channel is really nothing more than an finite impulse 
response (FIR) filter with time varying coefficients. The 
input-output description of the FIR filter with time varying 
coefficients is 
 

 
 

Where hn[k] are the time varying coefficients of the 
channel. On the basis of corrupted output of the channel 
we have to estimate the hn[k]. 
 

y[n] =s[n]+w[n] 
 

s[n] +w[n] =  
 
Where w[n] is assumed to be white Gaussian noise (WGN) 
with variance . 
Assume that the weights will not change rapidly from 
sample to sample. For Example, a slow-fading channel. 
Statistically, we may interpret the slow variation as a high 
degree of correlation between samples of the same tap 
weight. This observation leads us to model the tap weights 
as random variables whose time variation is described by a 
Gauss-Markov model. The use of such a signal model 
allows us to fix the correlation between the successive 
values of a given tap weight in time. Hence, we suppose 
the state vector is 

h[n] = Ah[n-1] + u[n] 
 

where h[n] = [hn[0],hn[1],…,hn[q-1]]T,  
A is a known qq matrix, 
 u[n] is the vector WGN with covariance matrix Q. 
A standard assumption that is made to simplify the 
modeling is that of the uncorrelated scattering [2]. We 
assume that the tap weights are uncorrelated with each 
other and hence independent due to jointly Gaussian 
assumption. As a result, we can let A,Q and Ch, the 
covariance matrix of h[-1] be diagonal matrices. The 
vector Gauss-Markov model then becomes q independent 
scalar models. The measurement model is, from (2)  
y[n] = [x[n], x[n - 1],..., x[n - q + 1]]h[n] + w[n]                   
(4) 
 

let xT [n] = [x[n], x[n - 1],…, x[n- q + 1]]. Equation (4) is 
equivalent to 
 

                 y[n] = xT[n]h[n] + w[n]             (5) 
 

We can now form the minimum mean square error 
(MMSE) estimator for the tapped delay line weights 
recursively in time using the Kalman filter for this 
particular problem (vector state and scalar observations). 

4. KALMAN FILTER  

Kalman filter is a MMSE (minimum mean square 
error) estimator of a signal embedded in noise, where 
the signal is characterized by a dynamic or state 
model. If the signal and noise are jointly Gaussian, 
then the Kalman filter is an optimal MMSE estimator, 
and if not, it is the optimal LMMSE estimator. 
Equation (3) represents the vector state model and 
equation (5) is scalar observation or measurement 
equation. The Kalman filter equations for this problem 
are [4]: 

 

 

Prediction: 
ĥ[n|n-1] =  Aĥ[n-1|n-1] 

Minimum Prediction MSE matrix ( ):   

 M[n|n-1] =  AM[n|n-1]AT + Ǫ 

Kalman Gain: 

 

Correction:     

 ĥ [n|n] = ĥ [n|n-1] + K[n](y[n] – xT[n] ĥ [n|n-1]) 

Minimum MSE: 
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  Fig.1 Channel true weights  
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   M[n|n]  =  (I – K[n]xT[n])M[ n|n-1] 

Initialization matrices are: 

ĥ[-1│-1]=  

M[-1│-1]=    

5. SIMULATION AND RESULTS 

Let the Kalman filter estimator have q = 2 weights. 

Assume a state model with A = and 

Q =  True values of the weights are 

shown in Fig. 2, in which hn[0] is decaying to zero while 
hn[1] is fairly constant. This is because the mean of the 
weights will be zero in steady state. Due to the smaller 
value of [A]11, hn[0] will decay more rapidly. Also, note 
that the eigen values of A are just the diagonal elements 
and they are less than 1 in magnitude. The o/p is 
determined from (1). When observation noise is added 
with  = 0.1, the channel output y[n] is shown in Fig. 4. 
Let ĥ[-1 -1] =  = 0 and M[-1 -1] = Ch = 100I, which were 
chosen to reflect little knowledge about the initial state. In 
the theoretical development of the Kalman filter the initial 
state estimate is given by the mean of s[-1].  
 
 
 
 
 

 
 
 

Fig 3 input sequence 

 
 

Fig.2 True values of the weights 
 
 

 
 

          Fig.4 channel output y[n] 

 

 

 
Fig. 5 estimated Tap weight 
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In practice this is seldom known, so that we usually just 
choose an arbitrary initial state estimate with a large initial 
MSE matrix to avoid “biasing” the Kalman filter towards 
that assumed state. The estimated tap weights are shown in 
Fig. 5. After an initial transient the Kalman filter “locks 
on" to the true weights and tracks them closely. The 
Kalman filter gains are shown in Fig. 6. 
They appear to attain a periodic steady-state, although this 
behavior is different than the usual steady-state, since x[n] 
varies with time and so true. steady-state is never attained. 
Also, at times the gain is zero, as for example in [K] 1 = 
k1[n] for 0   n  4. This is because at these times the 
input x[n] is zero and thus the observation contain only 
noise. The Kalman filter ignores these data samples by 
forcing the gain to be zero. Finally, the minimum MSEs 
are shown in Fig. 7   
 

 
Fig.6 Kalman filter gain  

 
 

 
 

    Fig.7 Minimum MMSE 
 

6. CONCLUSION 

In this paper, the channel is modeled as an FIR filter with 
time varying coefficients. The observation model is 
assumed to be Gauss-Markov for tap weights. Kalman 
filter is used to estimate the time varying coefficients of the 
channel 
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